View Single Post
  #1  
Unread 11-21-2017, 10:10 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,192
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated Ï? pulses

Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated Ï? pulses

Abstract

In multidimensional solution NMR experiments, Ï? pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during Ï? pulse execution result in severe signal losses that are exacerbated at high magnetic fields. Here, we report the implementation of a triply-compensated Ï? pulse (G5) optimized for both inversion and refocusing in widely used 2- and 3-dimensional experiments. By replacing most of the hard Ï? pulses, adiabatic or composite pulses on the 1H, 13C and 15N channels with G5 pulses, we obtained signal enhancements ranging from 80 to 240%. We anticipate that triply-compensated pulses will be crucial for improving the performance of multidimensional and multinuclear pulse sequences at ultra-high fields.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No