View Single Post
  #1  
Unread 04-11-2017, 04:25 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Field-frequency locked X-band Overhauser effect spectrometer #DNPNMR

From The DNP-NMR Blog:

Field-frequency locked X-band Overhauser effect spectrometer #DNPNMR

This article is already a bit older. However, it nicely illustrates that DNP, specifically ODNP has been around for a while already, and gives some interesting specifics on the instrumentation that are still valid today.


Chandrakumar, N. and P.T. Narasimhan, Field-frequency locked X-band Overhauser effect spectrometer. Review of Scientific Instruments, 1981. 52(4): p. 533-538.


http://dx.doi.org/10.1063/1.1136634


The design and construction of an Overhauser Effect Spectrometer operating at X band is described. The ESR section is a Varian V-4502 spectrometer equipped with a 9-in. electromagnet and a shim coil assembly. NMR detection is based on a broadband rf hybrid juction feeding a coil in an X-band quartz dielectric cavity. Signal processing is carried out at a constant intermediate frequency of 25.1 MHz with a Varian V -4311 fixed frequency rf unit. The mixing scheme employed to translate the NMR information to 25.1 MHz is described. Medium resolution performance (resolution _10-6 ) for the NMR is achieved under field-frequency locked conditions. The lock is based on a Super-Regenerative Oscillator (SRO) housing a control sample, and operating as a field-tracking frequency source. This SRO injects into an oscillator which excites the analytical sample resonance and also serves as a local oscillator, thereby making the locked spectrometer multinuclear in capability. Typical Overhauser effect recordings of protons and fluorines are presented.


p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Times} span.s1 {font: 6.0px Times}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No