View Single Post
  #1  
Unread 11-20-2016, 09:20 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates.

NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates.

Related Articles NMR Investigation of Structures of G-Protein Coupled Receptor Folding Intermediates.

J Biol Chem. 2016 Nov 18;:

Authors: Poms M, Ansorge P, Martinez-Gil L, Jurt S, Gottstein D, Fracchiolla KE, Cohen LS, Guentert P, Mingarro I, Naider F, Zerbe O

Abstract
Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot et al., Biochemistry 29(1990), 4031) is postulated to proceed in 2 steps: Partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two and the first three transmembrane (TM) segments, as well as a construct comprising TM1-TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin et al., Biophys. J. 96(2009), 3187), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123 and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.


PMID: 27864365 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No