View Single Post
  #1  
Unread 11-19-2016, 08:35 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,205
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR #DNPNMR

From The DNP-NMR Blog:

A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR #DNPNMR

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Neudert, O., C. Mattea, and S. Stapf, A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR. J Magn Reson, 2016. 271: p. 7-14.


https://www.ncbi.nlm.nih.gov/pubmed/27526396


A new probehead was developed enabling Dynamic Nuclear Polarization (DNP)-enhanced Fast-Field-Cycling relaxometry at 340mT polarization field strength. It is based on a dielectric cavity resonator operating in the TM110 mode at 9.5GHz, which is suitable for both transverse and axial magnet geometries with a bore access of at least 20mm. The probehead includes a planar radio frequency coil for NMR detection and is compatible with standard 3mm NMR tubes. The resonator was assessed in terms of the microwave conversion factor and microwave-induced sample heating effects. Due to the compact size of the cavity, appreciable microwave magnetic field strengths were observed even with only moderate quality factors. Exemplary DNP experiments at 9.5GHz and 2.0GHz microwave frequency are compared for three different viscous samples, demonstrating the advantage of DNP at 9.5GHz for such systems. This new probehead enables new applications of DNP-enhanced Fast-Field-Cycling relaxometry of viscous and solid systems.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No