View Single Post
  #1  
Unread 03-18-2016, 05:23 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,212
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Transport and imaging of brute-force (13)C hyperpolarization

From The DNP-NMR Blog:

Transport and imaging of brute-force (13)C hyperpolarization


Hirsch, M.L., et al., Transport and imaging of brute-force (13)C hyperpolarization. J Magn Reson, 2015. 261: p. 87-94.


http://www.ncbi.nlm.nih.gov/pubmed/26540650


We demonstrate transport of hyperpolarized frozen 1-(13)C pyruvic acid from its site of production to a nearby facility, where a time series of (13)C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained (13)C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T< approximately 2K and B approximately 14T) to pre-polarize protons to a large Boltzmann value ( approximately 0.4% (1)H polarization). After polarizing the neat, frozen sample, ejection quickly (20h) at reasonable conditions of 6K and 2T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 10(2)-fold more) by polarizing below 100mK, where nanoparticle agents are known to hasten T1 buildup by 100-fold, and to yield very little impact on T1 losses at temperatures relevant to transport.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No