View Single Post
  #1  
Unread 06-01-2015, 03:02 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,192
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default A "Smart" (129)Xe NMR Biosensor for pH-Dependent Cell Labeling

From The DNP-NMR Blog:

A "Smart" (129)Xe NMR Biosensor for pH-Dependent Cell Labeling


Riggle BA, Wang Y, Dmochowski IJ. A "Smart" (129)Xe NMR Biosensor for pH-Dependent Cell Labeling. J Am Chem Soc. 2015;137(16):5542-8.


http://www.ncbi.nlm.nih.gov/pubmed/25848822


Here we present a "smart" xenon-129 NMR biosensor that undergoes a peptide conformational change and labels cells in acidic environments. To a cryptophane host molecule with high Xe affinity, we conjugated a 30mer EALA-repeat peptide that is alpha-helical at pH 5.5 and disordered at pH 7.5. The (129)Xe NMR chemical shift at room temperature was strongly pH-dependent (Deltadelta = 3.4 ppm): delta = 64.2 ppm at pH 7.5 vs delta = 67.6 ppm at pH 5.5, where Trp(peptide)-cryptophane interactions were evidenced by Trp fluorescence quenching. Using hyper-CEST NMR, we probed peptidocryptophane detection limits at low-picomolar (10(-11) M) concentration, which compares favorably to other NMR pH reporters at 10(-2)-10(-3) M. Finally, in biosensor-HeLa cell solutions, peptide-cell membrane insertion at pH 5.5 generated a 13.4 ppm downfield cryptophane-(129)Xe NMR chemical shift relative to pH 7.5 studies. This highlights new uses for (129)Xe as an ultrasensitive probe of peptide structure and function, along with potential applications for pH-dependent cell labeling in cancer diagnosis and treatment.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No