View Single Post
  #1  
Unread 02-11-2015, 04:19 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,198
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Natural Abundance N NMR by Dynamic Nuclear Polarization: Fast Analysis of Binding Sites of a Novel Amine-Carboxyl-Linked Immobilized Dirhodium Catalyst

From The DNP-NMR Blog:

Natural Abundance N NMR by Dynamic Nuclear Polarization: Fast Analysis of Binding Sites of a Novel Amine-Carboxyl-Linked Immobilized Dirhodium Catalyst


Gutmann, T., et al., Natural Abundance N NMR by Dynamic Nuclear Polarization: Fast Analysis of Binding Sites of a Novel Amine-Carboxyl-Linked Immobilized Dirhodium Catalyst. Chemistry, 2015: p. n/a-n/a.


http://www.ncbi.nlm.nih.gov/pubmed/25620003


A novel heterogeneous dirhodium catalyst has been synthesized. This stable catalyst is constructed from dirhodium acetate dimer (Rh2 (OAc)4 ) units, which are covalently linked to amine- and carboxyl-bifunctionalized mesoporous silica (SBA-15NH2 COOH). It shows good efficiency in catalyzing the cyclopropanation reaction of styrene and ethyl diazoacetate (EDA) forming cis- and trans-1-ethoxycarbonyl-2-phenylcyclopropane. To characterize the structure of this catalyst and to confirm the successful immobilization, heteronuclear solid-state NMR experiments have been performed. The high application potential of dynamic nuclear polarization (DNP) NMR for the analysis of binding sites in this novel catalyst is demonstrated. Signal-enhanced 13 C CP MAS and 15 N CP MAS techniques have been employed to detect different carboxyl and amine binding sites in natural abundance on a fast time scale. The interpretation of the experimental chemical shift values for different binding sites has been corroborated by quantum chemical calculations on dirhodium model complexes.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No