View Single Post
  #1  
Unread 01-01-2015, 11:00 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR.

Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR.

Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR.

J Am Chem Soc. 2014 Dec 31;

Authors: Schneider R, Maurin D, Communie G, Kragelj J, Hansen DF, Ruigrok RW, Jensen MR, Blackledge M

Abstract
Despite playing important roles throughout biology, molecular recognition mechanisms in intrinsically disordered proteins remain poorly understood. We present a combination of 1HN, 13C' and 15N relaxation dispersion (RD) NMR, measured at multiple titration points, to map the interaction between the disordered domain of Sendai virus nucleoprotein (NT) and the C-terminal domain of the phosphoprotein (PX). Interaction with PX funnels the free-state equilibrium of NT by stabilizing one of the previously identified helical sub-states present in the pre-recognition ensemble, in a non-specific and dynamic encounter complex on the surface of PX. This helix then locates into the binding site at a rate coincident with intrinsic breathing motions of the helical groove on the surface of PX. The binding kinetics of complex formation are thus regulated by intrinsic free-state conformational dynamics of both proteins. This approach, providing high-resolution structural and kinetic information about a complex folding and binding interaction trajectory, can be applied to a number of experimental systems to provide a general framework for understanding conformational disorder in biomolecular function.


PMID: 25551399 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No