View Single Post
  #1  
Unread 11-25-2014, 09:40 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,198
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Two Classes of Cholesterol Binding Sites for the ?2AR Revealed by*Thermostability and NMR.

Two Classes of Cholesterol Binding Sites for the ?2AR Revealed by*Thermostability and NMR.

Two Classes of Cholesterol Binding Sites for the ?2AR Revealed by*Thermostability and NMR.

Biophys J. 2014 Nov 18;107(10):2305-12

Authors: Gater DL, Saurel O, Iordanov I, Liu W, Cherezov V, Milon A

Abstract
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (?2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in ?2AR. By analyzing the ?2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100*mM for their dissociation constant. However, these binding sites are specific for both cholesterol and ?2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the*high-affinity binding sites.


PMID: 25418299 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No