View Single Post
  #1  
Unread 11-04-2014, 01:02 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,211
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Evaluation of Activation Energies for Pairwise and Non-Pairwise Hydrogen Addition to Propyne Over Pd/Aluminosilicate Fiberglass Catalyst by Parahydrogen-Induced Polarization (PHIP)

From The DNP-NMR Blog:

Evaluation of Activation Energies for Pairwise and Non-Pairwise Hydrogen Addition to Propyne Over Pd/Aluminosilicate Fiberglass Catalyst by Parahydrogen-Induced Polarization (PHIP)


Salnikov, O.G., et al., Evaluation of Activation Energies for Pairwise and Non-Pairwise Hydrogen Addition to Propyne Over Pd/Aluminosilicate Fiberglass Catalyst by Parahydrogen-Induced Polarization (PHIP). Appl. Magn. Reson., 2014. 45(10): p. 1051-1061.


http://dx.doi.org/10.1007/s00723-014-0586-7


Hydrogenation of propyne to propene over Pd/aluminosilicate fiberglass catalyst in the temperature range 175–350 °C was investigated with the use of parahydrogen-induced polarization (PHIP) technique. Activation energies for both pairwise and non-pairwise H2 addition routes were estimated. It was found that at 175–275 °C the activation energies for hydrogen addition to the triple bond of propyne have similar values (about 60–70 kJ/mol) for both routes of hydrogen addition. At higher temperatures (275–350 °C), the rate constant for pairwise hydrogen addition reaches a maximum value while the rate constant for non-pairwise hydrogen addition continues to increase with increasing temperature.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No