View Single Post
  #1  
Unread 10-28-2014, 02:42 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Solution NMR of MPS-1 Reveals a Random Coil Cytosolic Domain Structure.

Solution NMR of MPS-1 Reveals a Random Coil Cytosolic Domain Structure.

Related Articles Solution NMR of MPS-1 Reveals a Random Coil Cytosolic Domain Structure.

PLoS One. 2014;9(10):e111035

Authors: Li P, Shi P, Lai C, Li J, Zheng Y, Xiong Y, Zhang L, Tian C

Abstract
Caenorhabditis elegans MPS1 is a single transmembrane helical auxiliary subunit that co-localizes with the voltage-gated potassium channel KVS1 in the nematode nervous system. MPS-1 shares high homology with KCNE (potassium voltage-gated channel subfamily E member) auxiliary subunits, and its cytosolic domain was reported to have a serine/threonine kinase activity that modulates KVS1 channel function via phosphorylation. In this study, NMR spectroscopy indicated that the full length and truncated MPS-1 cytosolic domain (134-256) in the presence or absence of n-dodecylphosphocholine detergent micelles adopted a highly flexible random coil secondary structure. In contrast, protein kinases usually adopt a stable folded conformation in order to implement substrate recognition and phosphoryl transfer. The highly flexible random coil secondary structure suggests that MPS-1 in the free state is unstructured but may require a substrate or binding partner to adopt stable structure required for serine/threonine kinase activity.


PMID: 25347290 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No