View Single Post
  #1  
Unread 04-16-2014, 11:09 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,197
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments

From The DNP-NMR Blog:

Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments


Pravdivtsev, A.N., et al., Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments. ChemPhysChem, 2013. 14(14): p. 3327-3331.


http://www.ncbi.nlm.nih.gov/pubmed/23959909


Various hyperpolarization methods are able to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) by several orders of magnitude. Among these methods are para-hydrogen-induced polarization (PHIP) and signal amplification by reversible exchange (SABRE), which exploit the strong nuclear alignment of para-hydrogen. Several SABRE experiments have been reported but, so far, it has not been possible to account for the experimentally observed sign and magnetic-field dependence of substrate polarization. Herein, we present an analysis based on level anti-crossings (LACs), which provides a complete understanding of the SABRE effect. The field-dependence of both net and anti-phase polarization is measured for several ligands, which can be reproduced by the theory. The similar SABRE field-dependence for different ligands is also explained. In general, the LAC concept allows complex spin dynamics to be unraveled, and is crucial for optimizing the performance of novel hyperpolarization methods in NMR and MRI techniques.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No