View Single Post
  #1  
Unread 12-20-2013, 08:40 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,203
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Dynamic nuclear polarization of (17)o: direct polarization

From The DNP-NMR Blog:

Dynamic nuclear polarization of (17)o: direct polarization



Michaelis, V.K., et al., Dynamic nuclear polarization of (17)o: direct polarization. J Phys Chem B, 2013. 117(48): p. 14894-906.


http://www.ncbi.nlm.nih.gov/pubmed/24195759


Dynamic nuclear polarization of (17)O was studied using four different polarizing agents: the biradical TOTAPOL and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms, and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and biradical polarizing agents. Enhancements were recorded at 100 using the trityl (OX063) radical and 10 000-fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No