View Single Post
  #1  
Unread 10-17-2013, 12:49 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,209
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.

From Mendeley Biomolecular NMR group:

Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.

Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al.

Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and characterize "invisible" excited protein states in slow exchange with a visible ground-state conformation (excited-state lifetimes ranging from ~5 to 50 ms) is presented. This method, which is an adaptation of the chemical exchange saturation transfer (CEST) magnetic resonance imaging experiment, involves irradiating various regions of the spectrum with a weak B(1) field while monitoring the effect on the visible major-state peaks. The variation in major-state peak intensities as a function of frequency offset and B(1) field strength is quantified to obtain the minor-state population, its lifetime, and excited-state chemical shifts and line widths. The methodology was validated with (15)N CEST experiments recorded on an SH3 domain-ligand exchanging system and subsequently used to study the folding transition of the A39G FF domain, where the invisible unfolded state has a lifetime of ~20 ms. Far more accurate exchange parameters and chemical shifts were obtained than via analysis of Carr-Purcell-Meiboom-Gill relaxation dispersion data.

Published using Mendeley: The research paper manager



Read comments about this paper at Mendeley Biomolecular NMR group
Reply With Quote


Did you find this post helpful? Yes | No