View Single Post
  #1  
Unread 09-11-2013, 09:15 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,206
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default The Observation and Dynamics of 1H NMR Spin Noise in Methanol

From The DNP-NMR Blog:

The Observation and Dynamics of 1H NMR Spin Noise in Methanol


Jurkiewicz, A., The Observation and Dynamics of 1H NMR Spin Noise in Methanol. Appl. Magn. Reson., 2013: p. 1-18.


http://dx.doi.org/10.1007/s00723-013-0473-7


The observation of 1H spin noise in relation to prior established mag- netization and radiation damping has revealed a correlated dynamics. The spin noise of methyl satellites in 13C-enriched methanol was observed in the presence of an antiphase magnetization, created by the combination of 1H–13C J coupling evolution and radiofrequency (RF) ulses. A gradient pulse was applied to remove residue spin coherence coming from the RF pulses, and as a result spin noise phenomena were uncovered. While magnetization was in an inverted metastable state, the spin– spin relaxation time was shortened to prevent a super radiation burst. The relation between magnetization, radiation amping, and absorption or emission of the spin noise of methyl satellites has been studied. In relation to agnetization and radiation damping, spin noise bump and dip have been observed simultaneously in the same molecule. Both can be created through a proper inversion of magnetization. The revealed spin noise dynamics of spin system coupling to the probe circuit via radiation damping allows performance of a transformation from dip into bump by proper application of pulses combined with 1H–13C J coupling evolution.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No