View Single Post
  #1  
Unread 09-10-2013, 08:44 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,211
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.

Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.

Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein.

Nat Methods. 2013 Sep 8;

Authors: Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V

Abstract
Determination of structure of integral membrane proteins, especially in their native environment, is a formidable challenge in structural biology. Here we demonstrate that magic angle spinning solid-state NMR spectroscopy can be used to determine structures of membrane proteins reconstituted in synthetic lipids, an environment similar to the natural membrane. We combined a large number of experimentally determined interatomic distances and local torsional restraints to solve the structure of an oligomeric membrane protein of common seven-helical fold, Anabaena sensory rhodopsin (ASR). We determined the atomic resolution detail of the oligomerization interface of the ASR trimer, and the arrangement of helices, side chains and the retinal cofactor in the monomer.


PMID: 24013819 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No