View Single Post
  #1  
Unread 06-26-2013, 09:39 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts.

Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts.

Related Articles Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts.

Chemphyschem. 2013 Jun 21;

Authors: Kragelj J, Ozenne V, Blackledge M, Jensen MR

Abstract
The realization that a protein can be fully functional even in the absence of a stable three-dimensional structure has motivated a large number of studies describing the conformational behaviour of these proteins at atomic resolution. Here, we review recent advances in the determination of local structural propensities of intrinsically disordered proteins (IDPs) from experimental NMR chemical shifts. A mapping of the local structure in IDPs is of paramount importance in order to understand the molecular details of complex formation, in particular, for IDPs that fold upon binding or undergo structural transitions to pathological forms of the same protein. We discuss experimental strategies for the spectral assignment of IDPs, chemical shift prediction algorithms and the generation of representative structural ensembles of IDPs on the basis of chemical shifts. Additionally, we highlight the inherent degeneracies associated with the determination of IDP sub-state populations from NMR chemical shifts alone.


PMID: 23794453 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No