View Single Post
  #1  
Unread 05-21-2013, 01:54 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,198
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance

From The DNP-NMR Blog:

Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance

Colell, J., et al., Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance. Phys. Rev. Lett., 2013. 110(13): p. 137602.


http://www.ncbi.nlm.nih.gov/pubmed/23581373


<div style="text-align: justify;">We report new phenomena in low-field ^{1}H nuclear magnetic resonance (NMR) spectroscopy using parahydrogen induced polarization (PHIP), enabling determination of chemical shift differences, deltanu, and the scalar coupling constant J. NMR experiments performed with thermal polarization in millitesla magnetic fields do not allow the determination of scalar coupling constants for homonuclear coupled spins in the inverse weak coupling regime (deltanu
Reply With Quote


Did you find this post helpful? Yes | No