View Single Post
  #1  
Unread 03-01-2013, 05:20 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,205
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Error estimation in astronomy: A guide

From Mendeley Biomolecular NMR group:

Error estimation in astronomy: A guide

Pages: 23. Rene Andrae et al.

Estimating errors is a crucial part of any scientific analysis. Whenever a parameter is estimated (model-based or not), an error estimate is necessary. Any parameter estimate that is given without an error estimate is meaningless. Nevertheless, many (undergraduate or graduate) students have to teach such methods for error estimation to themselves when working scientifically for the first time. This manuscript presents an easy-to-understand overview of different methods for error estimation that are applicable to both model-based and model-independent parameter estimates. These methods are not discussed in detail, but their basics are briefly outlined and their assumptions carefully noted. In particular, the methods for error estimation discussed are grid search, varying $\chi^2$, the Fisher matrix, Monte-Carlo methods, error propagation, data resampling, and bootstrapping. Finally, a method is outlined how to propagate measurement errors through complex data-reduction pipelines.

Published using Mendeley: The library management tool for researchers



Read comments about this paper at Mendeley Biomolecular NMR group
Reply With Quote


Did you find this post helpful? Yes | No