View Single Post
  #1  
Unread 02-03-2013, 10:19 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,192
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.

STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.

Related Articles STARD5 specific ligand binding: Comparison with STARD1 and STARD4 subfamilies.

Mol Cell Endocrinol. 2013 Jan 19;

Authors: Létourneau D, Lefebvre A, Lavigne P, Lehoux JG

Abstract
We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical techniques. Whereas STARD1 and STARD6 bind cholesterol, no cholesterol binding could be detected for STARD5. However, titration of STARD5 with cholic acid and chenodeoxycholic acid led to specific binding. Using perturbation of the (1)H-(15)N-HSQC spectra and the sequence specific NMR assignments, we identified the amino acids in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Interestingly, these residues are not conserved in STARD1 and STARD6 and could therefore be key structural determinants of the specificity of START domains toward their ligands. We highlight three tissues expressing STARD5 that are affected by bile acids.


PMID: 23337244 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No