View Single Post
  #1  
Unread 02-03-2013, 10:19 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,197
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default The orthosteric agonist-binding pocket in the prototypic class B G-protein-coupled secretin receptor.

The orthosteric agonist-binding pocket in the prototypic class B G-protein-coupled secretin receptor.

Related Articles The orthosteric agonist-binding pocket in the prototypic class B G-protein-coupled secretin receptor.

Biochem Soc Trans. 2013 Feb 1;41(1):154-8

Authors: Miller LJ, Dong M

Abstract
Class B GPCRs (G-protein-coupled receptors) share heptahelical topology and G-protein binding with other superfamily members, yet have unique structures and modes of activation. Natural ligands for these receptors are moderate-length peptides with C-terminal ?-helices. NMR and crystal structures of the peptide-bound disulfide-bonded receptor N-terminal domains demonstrate that these helices occupy a conserved groove; however, the details of this interaction vary from one receptor to another. In this review, we focus on the prototypic secretin receptor and use extensive intrinsic photoaffinity labelling, structure-activity series, alanine-replacement mutagenesis and fluorescence analysis to define the molecular basis for this interaction. Additionally, experimental validation of predictions coming from in silico molecular modelling has provided a basis for enhancement of binding affinity. Such insights will be useful in the rational development of drugs acting at this important group of targets.


PMID: 23356276 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No