View Single Post
  #1  
Unread 12-12-2012, 01:44 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,198
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Mapping Molecular Perturbations by a New Form of Two-Dimensional Spectroscopy.

From Mendeley Biomolecular NMR group:

Mapping Molecular Perturbations by a New Form of Two-Dimensional Spectroscopy.

Journal of the American Chemical Society (2012). Eriks Kupce, Ray Freeman et al.

We propose a new general form of two-dimensional spectroscopy where the indirect 'evolution' dimension is derived using the Radon transform. This idea is applicable to several types of spectroscopy but is illustrated here for the case of NMR. This 'projection spectroscopy' displays characteristic correlation peaks that highlight perturbations of chemical shifts caused by temperature, pressure, solvent, molecular binding, chemical exchange, hydrogen-bonding, pH variations, conformational changes, or paramagnetic agents. The result is displayed in a convenient format that allows the chemist to see all the chemical shift perturbations at a glance, and assess their rates of change and directions. As proof of principle, two simple practical examples are presented that display two-dimensional representations of the temperature and solvent effects on NMR spectra.

Published using Mendeley: Academic software for researchers



Read comments about this paper at Mendeley Biomolecular NMR group
Reply With Quote


Did you find this post helpful? Yes | No