View Single Post
  #1  
Unread 11-24-2010, 11:14 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,207
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Reduction of RF-induced sample heating with a scroll coil resonator structure for sol

Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes.

Related Articles Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes.

J Magn Reson. 2005 Mar;173(1):40-8

Authors: Stringer JA, Bronnimann CE, Mullen CG, Zhou DH, Stellfox SA, Li Y, Williams EH, Rienstra CM

Heating due to high power 1H decoupling limits the experimental lifetime of protein samples for solid-state NMR (SSNMR). Sample deterioration can be minimized by lowering the experimental salt concentration, temperature or decoupling fields; however, these approaches may compromise biological relevance and/or spectroscopic resolution and sensitivity. The desire to apply sophisticated multiple pulse experiments to proteins therefore motivates the development of probes that utilize the RF power more efficiently to generate a high ratio of magnetic to electric field in the sample. Here a novel scroll coil resonator structure is presented and compared to a traditional solenoid. The scroll coil is demonstrated to be more tolerant of high sample salt concentrations and cause less RF-induced sample heating. With it, the viable experimental lifetime of a microcrystalline ubiquitin sample has been extended by more than an order of magnitude. The higher B1 homogeneity and permissible decoupling fields enhance polarization transfer efficiency in 15N-13C correlation experiments employed for protein chemical shift assignments and structure determination.

PMID: 15705511 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No