View Single Post
  #1  
Unread 11-24-2010, 10:03 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Conformational properties of peptide fragments homologous to the 106-114 and 106-126

Conformational properties of peptide fragments homologous to the 106-114 and 106-126 residues of the human prion protein: a CD and NMR spectroscopic study.

Related Articles Conformational properties of peptide fragments homologous to the 106-114 and 106-126 residues of the human prion protein: a CD and NMR spectroscopic study.

Org Biomol Chem. 2005 Feb 7;3(3):490-7

Authors: Di Natale G, Impellizzeri G, Pappalardo G

Two peptide fragments, corresponding to the amino acid residues 106-126 (PrP[Ac-106-126-NH(2)]) and 106-114 (PrP[Ac-106-114-NH(2)]) of the human prion protein have been synthesised in the acetylated and amide form at their N- and C-termini, respectively. The conformational preferences of PrP[Ac-106-126-NH(2)] and PrP[Ac-106-114-NH(2)] were investigated using CD and NMR spectroscopy. CD results showed that PrP[Ac-106-126-NH(2)] mainly adopts an alpha-helical conformation in TFE-water mixture and in SDS micelles, while a predominantly random structure is observed in aqueous solution. The shorter PrP[Ac-106-114-NH(2)] fragment showed similar propensities when investigated under the same experimental conditions as those employed for PrP[Ac-106-126-NH(2)]. From CD experiments at different SDS concentrations, an alpha-helix/beta-sheet conformational transition was only observed in the blocked PrP[Ac-106-126-NH(2)] sequence. The NMR analysis confirmed the helical nature of PrP[Ac-106-126-NH(2)] in the presence of SDS micelles. The shorter PrP[Ac-106-114-NH(2)] manifested a similar behaviour. The results as a whole suggest that both hydrophobic effects and electrostatic interactions play a significant role in the formation and stabilisation of ordered secondary structures in PrP[Ac-106-126-NH(2)].

PMID: 15678187 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No