View Single Post
  #1  
Unread 11-24-2010, 09:16 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Application of NMR SHAPES screening to an RNA target.

Application of NMR SHAPES screening to an RNA target.

Related Articles Application of NMR SHAPES screening to an RNA target.

J Am Chem Soc. 2003 Dec 24;125(51):15724-5

Authors: Johnson EC, Feher VA, Peng JW, Moore JM, Williamson JR

Several NMR screening techniques have been developed in recent years to aid in the identification of lead drug compounds. These NMR methods have traditionally been used for protein targets, and here we examine their applicability for an RNA target. We used the SHAPES compound library to test three different NMR screening methodologies: the saturation transfer difference (STD), the 2D trNOESY, and the WaterLOGSY experiments. We found that the WaterLOGSY experiment was the most sensitive method for our RNA target, the P4P6 domain of the Tetrahymena thermophila Group I intron. Using the WaterLOGSY experiment, we found that 23 of the 112 SHAPES compounds interact with P4P6. To identify which of these 23 hits bind through nonspecific interactions, we counterscreened with a linear duplex RNA control and identified one of the SHAPES compounds as interacting with P4P6 specifically. We thus demonstrated that the WaterLOGSY experiment in combination with the SHAPES compound library can be used to efficiently find RNA binding lead compounds.

PMID: 14677945 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No