View Single Post
  #1  
Unread 11-24-2010, 09:01 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,210
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Dynamic properties of the G93A mutant of copper-zinc superoxide dismutase as detected

Dynamic properties of the G93A mutant of copper-zinc superoxide dismutase as detected by NMR spectroscopy: implications for the pathology of familial amyotrophic lateral sclerosis.

Related Articles Dynamic properties of the G93A mutant of copper-zinc superoxide dismutase as detected by NMR spectroscopy: implications for the pathology of familial amyotrophic lateral sclerosis.

Biochemistry. 2003 Feb 25;42(7):1890-9

Authors: Shipp EL, Cantini F, Bertini I, Valentine JS, Banci L

The backbone assignment of the copper-zinc superoxide dismutase amyotrophic lateral sclerosis G93A mutant was performed on an (15)N-enriched protein sample. (15)N R(1), R(2), and R(1)(rho) and (15)N-(1)H NOE experiments were then carried out at 600 MHz on G93A Cu(2)Zn(2)SOD and the values compared to the dynamics data for the "wild-type" protein. In addition, (15)N and (1)H chemical shift comparisons between wild-type Cu(2)Zn(2)SOD and its G93A mutant were also made. G93A exhibits a higher mobility than wild-type Cu(2)Zn(2)SOD, particularly in loops III and V, on a time scale faster than the rate of protein tumbling. There are also distinct chemical shift and NOE differences in residues 35-42 and 92-95, which comprise these loops. These two regions of Cu(2)Zn(2)SOD form the end of the beta-barrel termed the "beta-barrel plug" [Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160, 181-217]. The increased mobility and reduction of the number of observed NOEs in this region indicate an opening of the beta-barrel that may lead to amyloid fibrillogenesis. Alternatively, a motor neuron-specific substrate may bind this region of the protein, leading to deleterious modifications and/or reactions.

PMID: 12590575 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No