View Single Post
  #1  
Unread 11-24-2010, 09:01 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,207
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase

Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy.

Related Articles Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy.

Biochemistry. 2003 Apr 8;42(13):3635-44

Authors: DeRose EF, Darden T, Harvey S, Gabel S, Perrino FW, Schaaper RM, London RE

The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon (epsilon) subunit of HE provides the 3'-->5' exonucleolytic proofreading activity for this complex. Epsilon consists of two domains: an N-terminal domain containing the proofreading exonuclease activity (residues 1-186) and a C-terminal domain required for binding to the polymerase (alpha) subunit (residues 187-243). In addition to alpha, epsilon also binds the small (8 kDa) theta (theta) subunit. The function of theta is unknown, although it has been hypothesized to enhance the 3'-->5' exonucleolytic proofreading activity of epsilon. Using NMR analysis and molecular modeling, we have previously reported a structural model of epsilon186, the N-terminal catalytic domain of epsilon [DeRose et al. (2002) Biochemistry 41, 94]. Here, we have performed 3D triple resonance NMR experiments to assign the backbone and C(beta) resonances of [U-(2)H,(13)C,(15)N] methyl protonated epsilon186 in complex with unlabeled theta. A structural comparison of the epsilon186-theta complex with free epsilon186 revealed no major changes in secondary structure, implying that the overall structure is not significantly perturbed in the complex. Amide chemical shift comparisons between bound and unbound epsilon186 revealed a potential binding surface on epsilon for interaction with theta involving structural elements near the epsilon catalytic site. The most significant shifts observed for the epsilon186 amide resonances are localized to helix alpha1 and beta-strands 2 and 3 and to the region near the beginning of alpha-helix 7. Additionally, a small stretch of residues (K158-L161), which previously had not been assigned in uncomplexed epsilon186, is predicted to adopt beta-strand secondary structure in the epsilon186-theta complex and may be significant for interaction with theta. The amide shift pattern was confirmed by the shifts of aliphatic methyl protons, for which the larger shifts generally were concentrated in the same regions of the protein. These chemical shift mapping results also suggest an explanation for how the unstable dnaQ49 mutator phenotype of epsilon may be stabilized by binding theta.

PMID: 12667053 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No