View Single Post
  #1  
Unread 11-24-2010, 08:58 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,198
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 1H NMR structure of the heme pocket of HNO-myoglobin.

1H NMR structure of the heme pocket of HNO-myoglobin.

Related Articles 1H NMR structure of the heme pocket of HNO-myoglobin.

J Biol Inorg Chem. 2003 Feb;8(3):348-52

Authors: Sulc F, Fleischer E, Farmer PJ, Ma D, La Mar GN

The unique (1)H NMR signal of nitrosyl hydride at 14.8 ppm is used to obtain a solution structure of the distal pocket of Mb-HNO, a rare nitroxyl adduct with a half-life of several months at room temperature. (1)H NMR, NOESY and TOCSY data were obtained under identical experimental conditions on solutions of the diamagnetic HNO and CO complexes of equine Mb, allowing direct comparison of NMR data to a crystallographically characterized structure. Twenty NOEs between the nitrosyl hydride and protein and heme-based signals were observed. The HNO orientation obtained by modeling the experimental (1)H NMR NOESY data yielded an orientation of ca. -104 degrees referenced to the N-Fe-N vector between alpha and beta mesoprotons. An essentially identical orientation was obtained by simple energy minimization of the HNO adduct using ESFF potentials, suggesting steric control of the orientation. Differences in chemical shifts are seen for protons on residues Phe43(CD1) and Val68(E11), but both exhibit virtually identical NOESY contacts to other residues, and thus are attributed to small movements of ca. 0.1 A within the strong ring current. The most significant differences are seen in the NOESY peak intensities and chemical shifts for the ring non-labile protons of the distal His64(E7). The orientation of the His64(E7) in Mb-HNO was analyzed on the basis of the NOESY cross-peak changes and chemical shift changes, predicting a ca. 20 degrees rotation about the beta-gamma bond. The deduced HNO and His64(E7) orientations result in geometry where the His64(E7) ring can serve as the donor for a significant H-bond to the oxygen atom of the bound HNO.

PMID: 12589571 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No