View Single Post
  #1  
Unread 11-24-2010, 08:49 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,206
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default The ATP/metallothionein interaction: NMR and STM.

The ATP/metallothionein interaction: NMR and STM.

Related Articles The ATP/metallothionein interaction: NMR and STM.

Biochemistry. 2002 Feb 5;41(5):1689-94

Authors: Maret W, Heffron G, Hill HA, Djuricic D, Jiang LJ, Vallee BL

We have previously established that ATP binds to mammalian metallothionein-2 (MT). The interaction between ATP and MT and the associated conformational change of the protein affect the sulfhydryl reactivity and zinc transfer potential of MT [Jiang, L.-J., Maret, W., and Vallee, B. L. (1998) The ATP-metallothionein complex. Proc. Natl. Acad. Sci. U.S.A. 95, 9146-9149]. NMR spectroscopic investigations have now provided further evidence for the interaction. (35)Cl NMR spectroscopy has further identified chloride as an additional biological MT ligand, which can interfere with the interaction of ATP with MT. (1)H NMR/TOCSY spectra demonstrate that ATP binding affects the N- and C-terminal amino acids of the MT molecule. Scanning tunneling microscopy recorded images of single MT molecules in buffered solutions. Moreover, this technique demonstrates that the otherwise nearly linear MT molecule bends by about 20 degrees at its central hinge region between the domains in the presence of ATP. These results may bear on the development of mild obesity in MT null mice and the role of MT in the regulation of energy balance. The interaction suggests a mechanism for the cellular translocation, retention, and reactivity of the ATP*MT complex in the mitochondrial intermembrane space. Both MT and ATP are localized there, and MT and thionein alternately bind and release zinc, thereby affecting mitochondrial respiration.

PMID: 11814364 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No