View Single Post
  #1  
Unread 11-19-2010, 08:44 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,208
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Potential bias in NMR relaxation data introduced by peak intensity analysis and curve

Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods.

Related Articles Potential bias in NMR relaxation data introduced by peak intensity analysis and curve fitting methods.

J Biomol NMR. 2001 Sep;21(1):1-9

Authors: Viles JH, Duggan BM, Zaborowski E, Schwarzinger S, Huntley JJ, Kroon GJ, Dyson HJ, Wright PE

We present an evaluation of the accuracy and precision of relaxation rates calculated using a variety of methods, applied to data sets obtained for several very different protein systems. We show that common methods of data evaluation, such as the determination of peak heights and peak volumes, may be subject to bias, giving incorrect values for quantities such as R1 and R2. For example, one common method of peak-height determination, using a search routine to obtain the peak-height maximum in successive spectra, may be a source of significant systematic error in the relaxation rate. The alternative use of peak volumes or of a fixed coordinate position for the peak height in successive spectra gives more accurate results, particularly in cases where the signal/noise is low, but these methods have inherent problems of their own. For example, volumes are difficult to quantitate for overlapped peaks. We show that with any method of sampling the peak intensity, the choice of a 2- or 3-parameter equation to fit the exponential relaxation decay curves can dramatically affect both the accuracy and precision of the calculated relaxation rates. In general, a 2-parameter fit of relaxation decay curves is preferable. However, for very low intensity peaks a 3 parameter fit may be more appropriate.

PMID: 11693564 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No