BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from other NMR forums
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-11-2012, 10:36 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 21,379
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default residue information in case of line broadening (intensity drop ) of HSQC titration

residue information in case of line broadening (intensity drop ) of HSQC titration

Dear Friends

we have done HSQC gradient titration with targeted proteins , most of cross peaks we observed intensity drop , 30 out of 95 peaks ( 70 percent intensity drop of each cross peak ) , other cross peaks also we observe intensity drop less than 70 percent , we did n"t observe any chemical shift change .( May be it is due to intermediate exchange regime of complex ) .ITC experiment showing 12uM binding constant .AUC experiment result is complex size 33 kd .

is their any method to extract residue information from intensity drop of HSQC titration spectra more specifically ?

How to minimize line broadening effect while taking HSQC Titration ?



Check if somebody has answered this question on NMRWiki QA forum
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] How to extract residue information in case of line broadening (intensity drop ) of HSQC titration of protein - protein interaction data ?
How to extract residue information in case of line broadening (intensity drop ) of HSQC titration of protein - protein interaction data ? Dear Friends we have done HSQC gradient titration with targeted proteins , most of cross peaks we observed intensity drop , 30 out of 95 peaks ( 70 percent intensity drop of each cross peak ) , other cross peaks also we observe intensity drop less than 70 percent , we did n"t observe any chemical shift change .( May be it is due to intermediate exchange regime of complex ) .ITC experiment showing 12uM binding constant .AUC experiment result is...
nmrlearner News from other NMR forums 0 05-09-2012 07:38 PM
[Question from NMRWiki Q&A forum] Line broadening in nmr
Line broadening in nmr Hello can some body help me in understanding the line broadening effect in NMR? I am working with protein and small molecules and I observed severe broadening at a protein to ligand ratio 1:20. I am pretty sure that its not aggregation since i have the free ligand spectrum without the protein which didnt showed any broadening effect. Hope somebody will guide me.. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 10-04-2011 08:47 PM
[NMR paper] Real-time NMR kinetic studies provide global and residue-specific information on the
Real-time NMR kinetic studies provide global and residue-specific information on the non-cooperative unfolding of the beta-trefoil protein, interleukin-1beta. Related Articles Real-time NMR kinetic studies provide global and residue-specific information on the non-cooperative unfolding of the beta-trefoil protein, interleukin-1beta. J Mol Biol. 2003 May 2;328(3):693-703 Authors: Roy M, Jennings PA The interleukin-1beta (IL-1beta) structural motif is a beta-trefoil super fold created by six two-stranded beta-hairpins. Turns are thus...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR exchange broadening arising from specific low affinity protein self-association:
NMR exchange broadening arising from specific low affinity protein self-association: analysis of nitrogen-15 nuclear relaxation for rat CD2 domain 1. Related Articles NMR exchange broadening arising from specific low affinity protein self-association: analysis of nitrogen-15 nuclear relaxation for rat CD2 domain 1. J Biomol NMR. 1999 Aug;14(4):307-20 Authors: Pfuhl M, Chen HA, Kristensen SM, Driscoll PC Nuclear spin relaxation monitored by heteronuclear NMR provides a useful method to probe the overall and internal molecular motion for...
nmrlearner Journal club 0 11-18-2010 08:31 PM
peak intensity vs number of scans
Hi, I have a question regarding how the peak intensities change when with increase in number of scans when the data is collected on a Varian NMR spectrometer. Suppose I collect a 15N-1H HSQC spectra with 8 scans and then collect the same spectra with 16 scans, would the peak intensities be double in the 16 scan spectra as compared to the 8 scan spectra? Does anyone know how the varian spectrometer scales the intensities according to the number of scans? Any suggestion or reply to my query will be extremely useful and greatly appreciated. Thanks.
aish1982 NMR software 0 08-08-2008 11:56 PM
peak intensity vs number of scans
Hi, I have a question regarding how the peak intensities change when with increase in number of scans when the data is collected on a Varian NMR spectrometer. Suppose I collect a 15N-1H HSQC spectra with 8 scans and then collect the same spectra with 16 scans, would the peak intensities be double in the 16 scan spectra as compared to the 8 scan spectra? Does anyone know how the varian spectrometer scales the intensities according to the number of scans? Any suggestion or reply to my query will be extremely useful and greatly appreciated. Thanks.
aish1982 NMR Questions and Answers 0 08-08-2008 07:28 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:39 PM.


Map