BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-20-2020, 05:10 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default In vivo melanoma imaging based on dynamic nuclear polarization enhancement in melanin pigment of living mice using in vivo dynamic nuclear polarization magnetic resonance imaging #DNPNMR

From The DNP-NMR Blog:

In vivo melanoma imaging based on dynamic nuclear polarization enhancement in melanin pigment of living mice using in vivo dynamic nuclear polarization magnetic resonance imaging #DNPNMR

Hyodo, Fuminori, Tatsuya Naganuma, Hinako Eto, Masaharu Murata, Hideo Utsumi, and Masayuki Matsuo. “In Vivo Melanoma Imaging Based on Dynamic Nuclear Polarization Enhancement in Melanin Pigment of Living Mice Using in Vivo Dynamic Nuclear Polarization Magnetic Resonance Imaging.” Free Radical Biology and Medicine 134 (April 2019): 99–105.


https://doi.org/10.1016/j.freeradbiomed.2019.01.002.


Melanin is a pigment that includes free radicals and is widely distributed in living animals. Malignant melanoma is one of the most progressive tumors in humans with increasing incidence worldwide, and has shown resistance to chemotherapy, resulting in high mortality at the metastatic stage. In general, melanoma involves the abnormal accumulation of melanin pigment produced by malignant melanocytes. Electron paramagnetic resonance (EPR) spectroscopy and imaging is a powerful technique to directly visualize melanomas using endogenous free radicals in the melanin pigment. Because melanin radicals have a large linewidth, the low spatial resolution of EPR imaging results in blurred images and a lack of anatomical information. Dynamic nuclear polarization (DNP)-MRI is a noninvasive imaging method to obtain the spatio-temporal information of free radicals with MRI anatomical resolution. Proton signals in tissues, including free radicals, can be dramatically enhanced by EPR irradiation at the resonance frequency of the free radical prior to applying the MRI pulse sequence. However, the DNP effects of free radicals in the pigment of living organisms is unclear. Therefore, if endogenous free radicals in melanin pigment could be utilized as a bio-probe for DNP-MRI, this will be an advantage for the specific enhancement of melanoma tissues and might allow the separate noninvasive visualization of melanoma tissues without the need for probe administration. Here, we report that biological melanin pigment induced a in vivo DNP effect by interacting with water molecules. In addition, we demonstrated in vivo melanoma imaging based on the DNP effects of endogenous free radicals in the melanin pigment of living mice.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Biomolecular imaging of (13)C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies
From The DNP-NMR Blog: Biomolecular imaging of (13)C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies Flori, A., G. Giovannetti, M. F. Santarelli, G. D. Aquaro, D. De Marchi, S. Burchielli, F. Frijia, V. Positano, L. Landini, and L. Menichetti. “Biomolecular Imaging of (13)C-Butyrate with Dissolution-DNP: Polarization Enhancement and Formulation for in Vivo Studies.” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 199 (June 15, 2018): 153–60. https://doi.org/10.1016/j.saa.2018.03.014.
nmrlearner News from NMR blogs 0 07-06-2018 09:40 AM
Dynamic nuclear polarization studies of nitroxyl spin probes in agarose gel using Overhauser-enhanced magnetic resonance imaging
From The DNP-NMR Blog: Dynamic nuclear polarization studies of nitroxyl spin probes in agarose gel using Overhauser-enhanced magnetic resonance imaging p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Meenakumari, V., et al., Dynamic nuclear polarization studies of nitroxyl spin probes in agarose gel using Overhauser-enhanced magnetic resonance imaging. Magn Reson Chem, 2017. 55(11): p. 1022-1028. https://www.ncbi.nlm.nih.gov/pubmed/28599057
nmrlearner News from NMR blogs 0 10-21-2017 04:46 AM
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI #DNPNMR #ODNP
From The DNP-NMR Blog: Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI #DNPNMR #ODNP p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Utsumi, H. and F. Hyodo, Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI. Methods Enzymol, 2015. 564: p. 553-71. https://www.ncbi.nlm.nih.gov/pubmed/26477265
nmrlearner News from NMR blogs 0 08-18-2017 04:59 PM
Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging #DNPNMR
From The DNP-NMR Blog: Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Hyodo, F., et al., Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging. Anal Chem, 2014. 86(15): p. 7234-8. https://www.ncbi.nlm.nih.gov/pubmed/25036767
nmrlearner News from NMR blogs 0 08-17-2017 12:56 AM
Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals
From The DNP-NMR Blog: Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals Ito, S. and F. Hyodo, Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals. Scientific Reports, 2016. 6: p. 21407.
nmrlearner News from NMR blogs 0 07-27-2017 01:04 AM
Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals
From The DNP-NMR Blog: Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Ito, S. and F. Hyodo, Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals. Scientific Reports, 2016. 6: p. 21407. http://dx.doi.org/10.1038/srep21407
nmrlearner News from NMR blogs 0 07-22-2017 05:57 AM
Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions #DNPNMR
From The DNP-NMR Blog: Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Lee, Y., Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions. Applied Spectroscopy Reviews, 2015. 51(3): p. 210-226. https://doi.org/10.1080/05704928.2015.1116078
nmrlearner News from NMR blogs 0 12-30-2016 04:53 PM
Dynamic nuclear polarization of biocompatible (13)C-enriched carbonates for in vivo pH imaging #DNPNMR
From The DNP-NMR Blog: Dynamic nuclear polarization of biocompatible (13)C-enriched carbonates for in vivo pH imaging #DNPNMR Korenchan, D.E., et al., Dynamic nuclear polarization of biocompatible (13)C-enriched carbonates for in vivo pH imaging. Chem Commun (Camb), 2016. 52(14): p. 3030-3. http://www.ncbi.nlm.nih.gov/pubmed/26792559
nmrlearner News from NMR blogs 0 06-02-2016 02:11 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:08 PM.


Map