BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-03-2018, 03:56 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field #DNPNMR

From The DNP-NMR Blog:

Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field #DNPNMR

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}

Thurber, K.R., et al., Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field. J Magn Reson, 2018. 289: p. 122-131.


https://www.ncbi.nlm.nih.gov/pubmed/29501956


Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2x larger (13)C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29K and 76K. With MAS at 7kHz and 1.5W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30mW with 5kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2T) and ESR lineshapes at 1.2 and 9.4T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9ms and 1.3ms, respectively, at 50K and 1.2T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four (14)N nuclei, even at 9.4T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants.






p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives #DNPNMR
From The DNP-NMR Blog: Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Liu, G., et al., Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives. Phys. Chem. Chem. Phys., 2017. 19(47): p. 31823-31829. https://www.ncbi.nlm.nih.gov/pubmed/29171613
nmrlearner News from NMR blogs 0 02-14-2018 04:47 PM
High-Field Solid-State NMR with Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: High-Field Solid-State NMR with Dynamic Nuclear Polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Lee, D., S. Hediger, and G.D. Paëpe, High-Field Solid-State NMR with Dynamic Nuclear Polarization, in Modern Magnetic Resonance, G.A. Webb, Editor. 2017, Springer International Publishing: Cham. p. 1-17. https://doi.org/10.1007/978-3-319-28275-6_73-1
nmrlearner News from NMR blogs 0 01-08-2018 03:44 PM
Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples #DNPNMR
From The DNP-NMR Blog: Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Salnikov, E.S., et al., Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples. ChemPhysChem, 2017. 18(15): p. 2103-2113. https://www.ncbi.nlm.nih.gov/pubmed/28574169
nmrlearner News from NMR blogs 0 09-25-2017 08:42 PM
Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR
From The DNP-NMR Blog: Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Järvinen, J., et al., Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature. Appl. Magn. Reson., 2017. 48(5): p. 473-483. http://dx.doi.org/10.1007/s00723-017-0875-z
nmrlearner News from NMR blogs 0 07-17-2017 04:07 PM
Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR
From The DNP-NMR Blog: Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Järvinen, J., et al., Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature. Appl. Magn. Reson., 2017. 48(5): p. 473-483. http://dx.doi.org/10.1007/s00723-017-0875-z
nmrlearner News from NMR blogs 0 05-02-2017 01:52 AM
Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy #DNPNMR
From The DNP-NMR Blog: Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Ravera, E., et al., Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy. ChemPhysChem, 2015. 16(13): p. 2751-2754. https://www.ncbi.nlm.nih.gov/pubmed/26266832
nmrlearner News from NMR blogs 0 03-16-2017 04:38 AM
Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms
From The DNP-NMR Blog: Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms Hovav, Y., et al., Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms. Appl. Magn. Reson., 2012. 43(1-2): p. 21-41. http://dx.doi.org/10.1007/s00723-012-0359-0
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
From the The DNP-NMR Blog: High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture Michaelis, V.K., et al., High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture. J Am Chem Soc, 2013. http://www.ncbi.nlm.nih.gov/pubmed/23373472
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:14 AM.


Map