BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-16-2011, 10:02 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Probe Tuning and 90 Degree Pulses

Probe Tuning and 90 Degree Pulses

In order to get meaningful results from multiple-pulse NMR pulse sequences, it is essential that the 90° and 180° pulses are calibrated at the power levels used in the sequences (see this post for example). The calibrations are usually done on a standard sample in a well tuned and matched probe. The calibrations are typically stored in a file which is called up when setting up particular NMR experiments. It is important to know that these calibrations are correct for the particular sample of interest only when the probe is well tuned and matched. For samples of high ionic strength, it may not be possible to properly tune and match the probe and the 90° and 180° pulses for these samples will be longer than those previously calibrated, resulting in questionable data. In these cases, the pulses must be calibrated on the problematic sample. The figure below addresses the question of how important proper tuning and matching are with respect to the 90° pulse duration. The 1H 90° pulses for a sample HDO in a 500 MHz broadband probe were measured by the fast nutation method for various states of probe tuning and matching. In the left-hand side of the figure, pulses were calibrated for a perfectly matched probe as a function of tuning frequency. One can see that the 90° pulse is at a minimum when the probe is perfectly tuned and increases as the probe is detuned in either direction. In the right-hand side of the figure, pulses were calibrated for a perfectly tuned probe as a function of probe mismatch. One can see that the 90° pulse is at a minimum in a perfectly matched probe and increases as a function of the degree of mismatch (in units of screen divisions on the spectrometer display). It is interesting to note that the 90° pulse duration is more forgiving to mismatch than to errors in probe tuning.



Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] Tuning and matching problem on atma command
Tuning and matching problem on atma command hello nmr wikier I am using Z-gradiant BBI probe on bruker AV-500 since last weak I am facing tuning and matching problem both by atma command and manually atmm command.ON atma command it is abroted in all standard sample and on atmm the coarse button did not arive only fine button active on proton channel while carbon channel work fine and befor reaching in mid of the curve the button reaches at end and curve goes away from center.I have tried by enlarging wbsw by 2o 40 60 but it is not working.I have also tried all command which are in BASH...
nmrlearner News from other NMR forums 0 10-05-2011 08:57 PM
[Question from NMRWiki Q&A forum] Tuning probe failed after a dual probe was replaced with a BBI probe
Tuning probe failed after a dual probe was replaced with a BBI probe We generally use Dual to run 13C and BBI to run 2D. After changed the probe, the command "edhead" was used to set the probe. Put the sample tube, lock the solvent, and then type "atma" to tune the probe. We always do it like this, but now we can not tune the proton after installed the BBI probe (13C is OK). The dip can not be found by "atma", and "atmm" was also not work on forming a dip. What is the most possible reason for this error? How to solve it and avoid it in the future ? Thanks. (Instrument: Bruker 400 MHz,...
nmrlearner News from other NMR forums 0 08-23-2011 05:31 PM
[U. of Ottawa NMR Facility Blog] Shaped Pulses
Shaped Pulses Shaped rf pulses are used frequently in modern NMR experiments for selective excitation and more efficient inversion. The figure below shows some of the pulse shapes in the Bruker shape library measured with an oscilloscope on an AVANCE III console. Each 50.3 MHz rf pulse was 1 msec in duration and was measured at the output of the signal generation unit.http://2.bp.blogspot.com/--GjbnC0soco/TeU9TDXS7nI/AAAAAAAAA4c/Kt3DwPKLjx8/s400/shaped_pulses_scope.jpghttps://blogger.googleusercontent.com/tracker/3300702123878659843-4230712340261495616?l=u-of-o-nmr-facility.blogspot.com...
nmrlearner News from NMR blogs 0 05-31-2011 11:41 PM
[U. of Ottawa NMR Facility Blog] FT NMR Spectra Without Pulses
FT NMR Spectra Without Pulses An FT NMR spectrum is obtained by applying a pulse at the Larmor frequency to a sample in a magnetic field. The precession of the spins induces a voltage in the receiver coil which is recorded as a function of time. The Fourier transform of the time dependent signal is the NMR spectrum. What happens if you do not provide any pulses? You might think that you would not observe a signal - but this is not the case. Even without any pulses there is sufficient noise present to allow incoherent precession of the nuclear spins. This precession can be measured and...
nmrlearner News from NMR blogs 0 04-19-2011 02:44 AM
[U. of Ottawa NMR Facility Blog] Excitation Profiles for Shaped Pulses
Excitation Profiles for Shaped Pulses Shaped pulses are very commonly used for selective excitation and nonselective inversion in a large number of NMR pulse sequences. The frequency domain excitation profile of a radio frequency pulse is the Fourier transform of the time dependent pulse shape and determines the width, uniformity and phase of the frequency spectrum excited. Since time and frequency are reciprocals of one another, short rf pulses have very wide excitation profiles and long rf pulses have very narrow selective excitation profiles. In a previous BLOG post the excitation...
nmrlearner News from NMR blogs 0 01-21-2011 03:31 AM
Signal enhancement in protein NMR using the spin-noise tuning optimum.
Signal enhancement in protein NMR using the spin-noise tuning optimum. Signal enhancement in protein NMR using the spin-noise tuning optimum. J Biomol NMR. 2010 Oct 6; Authors: Nausner M, Goger M, Bendet-Taicher E, Schlagnitweit J, Jerschow A, Müller N We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the...
nmrlearner Journal club 0 10-07-2010 10:33 AM
[U. of Ottawa NMR Facility Blog] Fast 90 Degree Pulse Determination
Fast 90 Degree Pulse Determination Almost all NMR measurements rely on the correct calibration of 90° pulses. This is traditionally done by collecting a series of spectra as a function of pulse duration, finding a null for the 180° or 360° pulse and calculating the 90° pulse by simple division by 2 or 4 in the case of the 180° and 360° nulls, respectively. This determination, although trivial, can be very time consuming. Wu and Otting* have presented a much faster method of determining a 90° pulse based on measuring the nutation of a magnetization vector directly. Continuous nutation is...
nmrlearner News from NMR blogs 0 08-21-2010 08:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:44 AM.


Map