BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-17-2018, 12:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative biosensor detection by chemically exchanging hyperpolarized 129Xe

From The DNP-NMR Blog:

Quantitative biosensor detection by chemically exchanging hyperpolarized 129Xe

Korchak, S., et al., Quantitative biosensor detection by chemically exchanging hyperpolarized 129Xe. PCCP, 2018. 20(3): p. 1800-1808.


http://dx.doi.org/10.1039/C7CP07051A


Chemical sensors informing about their local environment are of widespread use for chemical analysis. A thorough understanding of the sensor signaling is fundamental to data analysis and interpretation, and a requirement for technological applications. Here, sensors explored for the recognition and display of biomolecular and cellular markers by magnetic resonance and composed of host molecules for xenon atoms are considered. These host-guest systems are analytically powerful and also function as contrast agents in imaging applications. Using nuclear spin hyperpolarization of 129Xe and chemical exchange saturation transfer the detection sensitivity is orders of magnitude enhanced in comparison to conventional 1H NMR. The sensor signaling reflects this rather complex genesis, furthering the mere qualitative interpretation of biosensing data; to harvest the potential of the approach, however, a detailed numerical account is desired. To this end, we introduce a comprehensive expression that maps the sensor detection quantitatively by integration of the hyperpolarization generation and relaxation with the host-xenon exchange dynamics. As demonstrated for the host molecule and well-established biosensor cryptophane-A, this model reveals a distinguished maximum in sensor signaling and exerts control over experimentation by dedicated adjustments of both the amount of xenon and the duration of the saturation transfer applied in a measurement, for example to capitalize on investigations at the detection limit. Furthermore, usage of the model for data analysis makes the quantification of the sensor concentration in the nanomolar range possible. The approach is readily applicable in investigations using cryptophane-A and is straightaway adaptable to other sensor designs for extension of the field of xenon based biosensing.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Rotaxane probes for protease detection by 129Xe hyperCEST NMR
From The DNP-NMR Blog: Rotaxane probes for protease detection by 129Xe hyperCEST NMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Slack, C.C., et al., Rotaxane probes for protease detection by 129Xe hyperCEST NMR. Chem Commun (Camb), 2017. 53(6): p. 1076-1079. https://www.ncbi.nlm.nih.gov/pubmed/28044166
nmrlearner News from NMR blogs 0 05-03-2017 07:03 PM
Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically ... - Dove Medical Press
Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically ... - Dove Medical Press <img alt="" height="1" width="1"> Highly sensitive detection of protein biomarkers via nuclear magnetic resonance biosensor with magnetically ... Dove Medical Press Here, we report a highly sensitive magnetic-based biosensing system that is composed of a miniaturized nuclear magnetic resonance (NMR) device and magnetically engineered nanoferrite particles (NFPs). The sensing performance, also identified as the ... Read here
nmrlearner Online News 0 11-19-2016 08:35 PM
Modular 129Xe NMR biosensor for MRI applications [Biophysics and Computational Biology]
Modular 129Xe NMR biosensor for MRI applications Rose, H. M., Witte, C., Rossella, F., Klippel, S., Freund, C., Schroder, L.... Date: 2014-08-12 Magnetic resonance imaging (MRI) is seriously limited when aiming for visualization of targeted contrast agents. Images are reconstructed from the weak diamagnetic properties of the sample and require an abundant molecule like water as the reporter. Micromolar to millimolar concentrations of conventional contrast agents are needed to generate image contrast,... Read More PNAS: Number: 32
nmrlearner Journal club 0 08-13-2014 07:49 AM
[NMR paper] Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations.
Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations. Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations. Proc Natl Acad Sci U S A. 2014 Jul 28; Authors: Rose HM, Witte C, Rossella F, Klippel S, Freund C, Schröder L Abstract Magnetic resonance imaging (MRI) is seriously limited when aiming for visualization of targeted contrast agents. Images are reconstructed from the weak diamagnetic...
nmrlearner Journal club 0 07-30-2014 10:22 AM
Post-doc in hyperpolarized 129Xe MRI - CEA Saclay, France
From The DNP-NMR Blog: Post-doc in hyperpolarized 129Xe MRI - CEA Saclay, France From the Ampere Magnetic Resonance List: A project untitled: « Polarized Xenon-MRI for diagnosis and follow up of Chest Tumors » is granted by the French programme « Projets de recherche dans le domaine de la physique, des mathématiques ou des sciences de l'ingénieur appliqués au cancer ».
nmrlearner News from NMR blogs 0 05-16-2014 08:06 PM
Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates
From The DNP-NMR Blog: Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates Xing, Y., et al., Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates. J. Magn. Reson., 2013. 234(0): p. 75-81. http://dx.doi.org/10.1016/j.jmr.2013.06.003
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
[NMR paper] Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor.
Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl. 2013 Apr 26;52(18):4849-53 Authors: Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A, Francis MB PMID: 23554263
nmrlearner Journal club 0 10-19-2013 03:22 PM
[NMR paper] Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectr
Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy. Related Articles Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy. J Mol Biol. 2002 Sep 13;322(2):425-40 Authors: Rubin SM, Lee SY, Ruiz EJ, Pines A, Wemmer DE Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:55 AM.


Map