BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR #DNPNMR (http://www.bionmr.com/forum/news-nmr-blogs-47/primary-transfer-step-light-driven-ion-pump-bacteriorhodopsin-irreversible-u-turn-revealed-dynamic-nuclear-polarization-enhanced-magic-angle-spinning-nmr-dnpnmr-25950/)

nmrlearner 04-20-2018 02:17 PM

Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR #DNPNMR
 
From The DNP-NMR Blog:

Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR #DNPNMR

Ni, Q.Z., et al., Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR. J. Am. Chem. Soc., 2018. 140(11): p. 4085-4091.


https://www.ncbi.nlm.nih.gov/pubmed/29489362


Despite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the Mo intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP. (15)N(SB)-(1)H correlations reveal that the newly deprotonated SB is accepting a hydrogen bond from an alcohol and (13)C-(13)C correlations show that Asp85 draws close to Thr89 before the primary proton transfer. Concurrently, (15)N-(13)C correlations between the SB and Asp85 show that helices C and G draw closer together just prior to the proton transfer and relax thereafter. Together, these results indicate that Thr89 serves to relay the SB proton to Asp85 and that creating this pathway involves rapprochement between the C and G helices as well as chromophore torsion.


p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 03:04 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013