BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   Perspectives on paramagnetic NMR from a life sciences infrastructure (http://www.bionmr.com/forum/news-nmr-blogs-47/perspectives-paramagnetic-nmr-life-sciences-infrastructure-25438/)

nmrlearner 12-13-2017 06:15 PM

Perspectives on paramagnetic NMR from a life sciences infrastructure
 
From The DNP-NMR Blog:

Perspectives on paramagnetic NMR from a life sciences infrastructure

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Ravera, E., G. Parigi, and C. Luchinat, Perspectives on paramagnetic NMR from a life sciences infrastructure. J Magn Reson, 2017. 282(Supplement C): p. 154-169.


https://www.ncbi.nlm.nih.gov/pubmed/28844254


The effects arising in NMR spectroscopy because of the presence of unpaired electrons, collectively referred to as "paramagnetic NMR" have attracted increasing attention over the last decades. From the standpoint of the structural and mechanistic biology, paramagnetic NMR provides long range restraints that can be used to assess the accuracy of crystal structures in solution and to improve them by simultaneous refinements through NMR and X-ray data. These restraints also provide information on structure rearrangements and conformational variability in biomolecular systems. Theoretical improvements in quantum chemistry calculations can nowadays allow for accurate calculations of the paramagnetic data from a molecular structural model, thus providing a tool to refine the metal coordination environment by matching the paramagnetic effects observed far away from the metal. Furthermore, the availability of an improved technology (higher fields and faster magic angle spinning) has promoted paramagnetic NMR applications in the fast-growing area of biomolecular solid-state NMR. Major improvements in dynamic nuclear polarization have been recently achieved, especially through the exploitation of the Overhauser effect occurring through the contact-driven relaxation mechanism: the very large enhancement of the (13)C signal observed in a variety of liquid organic compounds at high fields is expected to open up new perspectives for applications of solution NMR.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 05:20 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013