BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-07-2014, 03:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions

From The DNP-NMR Blog:

Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions


Corzilius, B., et al., Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions. J Magn Reson, 2014. 240(0): p. 113-23.


http://www.ncbi.nlm.nih.gov/pubmed/24394190


The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for (1)H; (2) the rotating frame relaxation time constant T1rho for (1)H and (13)C and (3) T2 of (13)C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, epsilon, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce approximately 40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Paramagnet Induced Signal Quenching in MAS-DNP Experiments in Homogeneous Solutions
From The DNP-NMR Blog: Paramagnet Induced Signal Quenching in MAS-DNP Experiments in Homogeneous Solutions Corzilius, B., et al., Paramagnet Induced Signal Quenching in MAS-DNP Experiments in Homogeneous Solutions. J. Magn. Reson., (0). http://www.sciencedirect.com/science/article/pii/S1090780713003042
nmrlearner News from NMR blogs 0 02-05-2014 06:08 PM
Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules
From The DNP-NMR Blog: Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules Buljubasich, L., et al., Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules. J Magn Reson, 2012. 219(0): p. 33-40. http://www.ncbi.nlm.nih.gov/pubmed/22595295
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
[NMR paper] Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.
Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment. Related Articles Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment. J Biol Phys. 2013 Jan;39(1):131-44 Authors: Ba Y, Mao Y, Galdino L, Günsen Z Abstract The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR...
nmrlearner Journal club 0 07-19-2013 09:20 PM
Low concentration of a Gd-chelate increases the signal-to-noise ratio in fast pulsing BEST experiments
Low concentration of a Gd-chelate increases the signal-to-noise ratio in fast pulsing BEST experiments Publication year: 2012 Source:Journal of Magnetic Resonance</br> Nathalie Sibille, Gaëtan Bellot, Jing Wang, Hélène Déméné</br> Despite numerous developments in the past few years that aim to increase the sensitivity of NMR multidimensional experiments, NMR spectroscopy still suffers from intrinsic low sensitivity. In this report, we show that the combination of two developments in the field, the Band-selective Excitation Short-Transient (BEST) experiment and the...
nmrlearner Journal club 0 08-08-2012 07:16 PM
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments Publication year: 2012 Source:Journal of Magnetic Resonance</br> Yixuan Li, Qiang Wang, Zhengfeng Zhang, Jun Yang, Bingwen Hu, Qun Chen, Isao Noda, Feng Deng</br> Two-dimensional covariance (COV2D) spectroscopy with non-uniform and consecutive acquisition (NUCA) scheme is introduced. This NUCA-COV2D method allows the number of t1 points to be reduced by a factor of 1.5~3 without any broadening of the linewidth. Furthermore, the...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 6 March 2012</br> Yixuan*Li, Qiang*Wang, Zhengfeng*Zhang, Jun*Yang, Bingwen*Hu, ...</br> Two-dimensional covariance (COV2D) spectroscopy with non-uniform and consecutive acquisition (NUCA) scheme is introduced. This NUCA-COV2D method allows the number of t1points to be reduced by a factor of 1.5~3 without any broadening of the linewidth. Furthermore, the signal-to-noise ratio (S/N) can...
nmrlearner Journal club 0 03-08-2012 08:46 AM
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. J Magn Reson. 2011 Aug 30; Authors: Qiang W Abstract We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the...
nmrlearner Journal club 0 09-21-2011 03:31 PM
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner Journal club 0 03-22-2011 07:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:10 AM.


Map