BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-15-2018, 09:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Spectral diffusion and dynamic nuclear polarization: Beyond the high temperature approximation #DNPNMR

From The DNP-NMR Blog:

Spectral diffusion and dynamic nuclear polarization: Beyond the high temperature approximation #DNPNMR

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Wenckebach, W.T., Spectral diffusion and dynamic nuclear polarization: Beyond the high temperature approximation. J. Magn. Reson., 2017. 284(Supplement C): p. 104-114.


http://www.sciencedirect.com/science...90780717302409


Dynamic Nuclear Polarization (DNP) has proven itself most powerful for the orientation of nuclear spins in polarized targets and for hyperpolarization in magnetic resonance imaging (MRI). Unfortunately, the theoretical description of some of the processes involved in DNP invokes the high temperature approximation, in which Boltzmann factors are expanded up to first order, while the high electron and nuclear spin polarization required for many applications do not justify such an approximation. A previous article extended the description of one of the mechanisms of DNP—thermal mixing—beyond the high temperature approximation (Wenckebach, 2017). But that extension is still limited: it assumes that fast spectral diffusion creates a local equilibrium in the electron spin system. Provotorov’s theory of cross-relaxation enables a consistent further extension to slower spectral diffusion, but also invokes the high temperature approximation. The present article extends the theory of cross-relaxation to low temperature and applies it to spectral diffusion in glasses doped with paramagnetic centres with anisotropic g-tensors. The formalism is used to describe DNP via the mechanism of the cross effect. In the limit of fast spectral diffusion the results converge to those obtained in Wenckebach (2017) for thermal mixing. In the limit of slow spectral diffusion a hole is burnt in the electron spin resonance (ESR) signal, just as predicted by more simple models. The theory is applied to DNP of proton and 13C spins in samples doped with the radical TEMPO.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High-Field Solid-State NMR with Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: High-Field Solid-State NMR with Dynamic Nuclear Polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Lee, D., S. Hediger, and G.D. Paëpe, High-Field Solid-State NMR with Dynamic Nuclear Polarization, in Modern Magnetic Resonance, G.A. Webb, Editor. 2017, Springer International Publishing: Cham. p. 1-17. https://doi.org/10.1007/978-3-319-28275-6_73-1
nmrlearner News from NMR blogs 0 01-08-2018 03:44 PM
High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction #DNPNMR
From The DNP-NMR Blog: High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Ha, M. and V.K. Michaelis, High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction, in Modern Magnetic Resonance, G.A. Webb, Editor. 2017, Springer International Publishing: Cham. p. 1-24. https://doi.org/10.1007/978-3-319-28275-6_140-1
nmrlearner News from NMR blogs 0 01-04-2018 08:45 AM
Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR
From The DNP-NMR Blog: Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Järvinen, J., et al., Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature. Appl. Magn. Reson., 2017. 48(5): p. 473-483. http://dx.doi.org/10.1007/s00723-017-0875-z
nmrlearner News from NMR blogs 0 07-17-2017 04:07 PM
Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla #DNPNMR
From The DNP-NMR Blog: Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Leavesley, A., et al., Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla. Phys. Chem. Chem. Phys., 2017. 19(5): p. 3596-3605. https://www.ncbi.nlm.nih.gov/pubmed/28094364
nmrlearner News from NMR blogs 0 06-02-2017 08:33 PM
Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR
From The DNP-NMR Blog: Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Järvinen, J., et al., Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature. Appl. Magn. Reson., 2017. 48(5): p. 473-483. http://dx.doi.org/10.1007/s00723-017-0875-z
nmrlearner News from NMR blogs 0 05-02-2017 01:52 AM
Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures #DNPNMR
From The DNP-NMR Blog: Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Geiger, M.A., et al., Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures. Phys. Chem. Chem. Phys., 2016. 18(44): p. 30696-30704. https://www.ncbi.nlm.nih.gov/pubmed/27791210
nmrlearner News from NMR blogs 0 01-25-2017 11:13 PM
Evidence of spin-temperature in dynamic nuclear polarization: an exact computation of the EPR spectrum #DNPNMR
From The DNP-NMR Blog: Evidence of spin-temperature in dynamic nuclear polarization: an exact computation of the EPR spectrum #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Caracciolo, F., et al., Evidence of spin-temperature in dynamic nuclear polarization: an exact computation of the EPR spectrum. Phys Chem Chem Phys, 2016. 18(36): p. 25655-25662. https://www.ncbi.nlm.nih.gov/pubmed/27711561
nmrlearner News from NMR blogs 0 11-19-2016 08:35 PM
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
From The DNP-NMR Blog: Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin Walker, S.A., et al., Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys. Chem. Chem. Phys., 2013. http://dx.doi.org/10.1039/C3CP51628H
nmrlearner News from NMR blogs 0 09-06-2013 06:52 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:29 AM.


Map