BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-10-2014, 08:46 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments

From The DNP-NMR Blog:

Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments


Takahashi, H., et al., Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments. J Magn Reson, 2013. 239C(0): p. 91-99.


http://www.ncbi.nlm.nih.gov/pubmed/24480716


Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to approximately 100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls
From The DNP-NMR Blog: Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls Wang, T., et al., Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A, 2013. 110(41): p. 16444-9. http://www.ncbi.nlm.nih.gov/pubmed/24065828
nmrlearner News from NMR blogs 0 11-26-2013 01:19 AM
[NMR paper] Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Related Articles Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. Proc Natl Acad Sci U S A. 2013 Sep 24; Authors: Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M Abstract Structure determination of protein binding to noncrystalline macromolecular assemblies such as plant cell walls (CWs) poses a significant structural biology challenge. CWs are loosened during growth by expansin proteins,...
nmrlearner Journal club 0 09-27-2013 03:28 AM
[NMR paper] Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning.
Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Related Articles Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning. Acc Chem Res. 2013 Jul 26; Authors: Parthasarathy S, Nishiyama Y, Ishii Y Abstract Recent research in fast magic angle spinning (MAS) methods has drasticallyimproved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In...
nmrlearner Journal club 0 07-31-2013 12:00 PM
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...
nmrlearner Journal club 0 10-10-2011 06:27 AM
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme.
Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. Signal enhancement for the sensitivity-limited solid state NMR experiments using a continuous, non-uniform acquisition scheme. J Magn Reson. 2011 Aug 30; Authors: Qiang W Abstract We describe a sampling scheme for the two-dimensional (2D) solid state NMR experiments, which can be readily applied to the sensitivity-limited samples. The sampling scheme utilizes continuous, non-uniform sampling profile for the...
nmrlearner Journal club 0 09-21-2011 03:31 PM
[NMR paper] Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse
Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing. Related Articles Sensitivity enhancement in two-dimensional solid-state NMR spectroscopy by transverse mixing. Chemphyschem. 2004 Jun 21;5(6):863-8 Authors: Tycko R The sensitivity of two-dimensional (2D) 13C-13C solid-state NMR spectroscopy under magic-angle spinning (MAS) is shown to be enhanced by the use of transverse polarization transfer in place of the conventional longitudinal polarization transfer. Experimental results are reported for 2D...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins u
Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. Related Articles Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J Am Chem Soc. 2003 Oct 1;125(39):11816-7 Authors: Duma L, Hediger S, Brutscher B, Böckmann A, Emsley L We show that the resolution of homonuclear multidimensional solid-state NMR correlation experiments can be significantly improved using transition selection and spin-state-selective polarization transfer...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Prospects for resonance assignments in multidimensional solid-state NMR spectra of un
Prospects for resonance assignments in multidimensional solid-state NMR spectra of uniformly labeled proteins. Related Articles Prospects for resonance assignments in multidimensional solid-state NMR spectra of uniformly labeled proteins. J Biomol NMR. 1996 Oct;8(3):239-51 Authors: Tycko R The feasibility of assigning the backbone 15N and 13C NMR chemical shifts in multidimensional magic angle spinning NMR spectra of uniformly isotopically labeled proteins and peptides in unoriented solid samples is assessed by means of numerical simulations....
nmrlearner Journal club 0 08-22-2010 02:20 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:16 PM.


Map