BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-10-2011, 04:29 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Nature News: Breaking the protein rules

Nature News: Breaking the protein rules

One of the textbook concepts in molecular biology is that proteins fold up spontaneously to form the most energetically stable three-dimensional structures. These folded proteins are presumed structurally rigid, which is important for their unique functionality, e.g. as enzymes. There are indications, however, mostly coming from NMR studies, that many important proteins exist in disordered form. A news feature in the latest issue of Nature discusses implications of this potentially far-reaching finding. Among cited examples of intrinsically disordered proteins is the NMR study on Sic1 protein by Julie Forman-Kay and her group at the University of Toronto/SickKids.

T. Chouard "Structural biology: Breaking the protein rules," Nature 471 (2011) 151-153. http://www.nature.com/news/2011/1103...l/471151a.html



Read complete story on NMR900 blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structural biology: Breaking the protein rules - Nature.com (subscription)
Structural biology: Breaking the protein rules - Nature.com (subscription) http://nt3.ggpht.com/news/tbn/i9Uh06f_mN2VpM/6.jpg Nature.com (subscription) <img alt="" height="1" width="1" /> Structural biology: Breaking the protein rules Nature.com (subscription) As is Martin Blackledge, an NMR spectroscopist at the Institute of Structural Biology in Grenoble, France, who compares the excitement now to that surrounding the first crystal protein structures in the 1950s. "Every new case is fascinating at the ...
nmrlearner Online News 0 03-10-2011 04:29 AM
[NMR paper] Probing the nature of the blue-shifted intermediate of photoactive yellow protein in
Probing the nature of the blue-shifted intermediate of photoactive yellow protein in solution by NMR: hydrogen-deuterium exchange data and pH studies. Related Articles Probing the nature of the blue-shifted intermediate of photoactive yellow protein in solution by NMR: hydrogen-deuterium exchange data and pH studies. Biochemistry. 2000 Nov 28;39(47):14392-9 Authors: Craven CJ, Derix NM, Hendriks J, Boelens R, Hellingwerf KJ, Kaptein R The nature of the pB intermediate of photoactive yellow protein (PYP) from Ectothiorhodospira halophila has...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies
Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8455-9 Authors: Kochoyan M, Keutmann HT, Weiss MA The...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies
Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Architectural rules of the zinc-finger motif: comparative two-dimensional NMR studies of native and "aromatic-swap" domains define a "weakly polar switch". Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8455-9 Authors: Kochoyan M, Keutmann HT, Weiss MA The...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:56 AM.


Map