BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   Multiscale computational modeling of (13)C DNP in liquids #DNPNMR (http://www.bionmr.com/forum/news-nmr-blogs-47/multiscale-computational-modeling-13-c-dnp-liquids-dnpnmr-23557/)

nmrlearner 05-31-2016 07:30 AM

Multiscale computational modeling of (13)C DNP in liquids #DNPNMR
 
From The DNP-NMR Blog:

Multiscale computational modeling of (13)C DNP in liquids #DNPNMR


Kucuk, S.E. and D. Sezer, Multiscale computational modeling of (13)C DNP in liquids. Phys Chem Chem Phys, 2016. 18(14): p. 9353-7.


http://www.ncbi.nlm.nih.gov/pubmed/27001446


Dynamic nuclear polarization (DNP) enables the substantial enhancement of the NMR signal intensity in liquids. While proton DNP is dominated by the dipolar interaction between the electron and nuclear spins, the Fermi contact (scalar) interaction is equally important for heavier nuclei. The impossibility to predict the magnitude and field dependence of the scalar contribution hampers the application of high-field DNP to nuclei other than (1)H. We demonstrate that molecular dynamics (MD) simulations followed by density functional calculations of the Fermi contacts along the MD trajectory lead to quantitative agreement with the DNP coupling factors of the methyl and carbonyl carbons of acetone in water at 0.35 T. Thus, the accurate calculation of scalar-dominated DNP enhancement at a desired magnetic field is demonstrated for the first time. For liquid chloroform at fields above 9 T, our methodology predicts direct (13)C DNP enhancements that are two orders of magnitude larger than those of (1)H.


Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 01:26 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013