BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-11-2015, 09:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO

From The DNP-NMR Blog:

Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO


Kucuk, S.E., et al., Molecular simulations for dynamic nuclear polarization in liquids: a case study of TEMPOL in acetone and DMSO. Phys Chem Chem Phys, 2015. 17(9): p. 6618-28.


http://www.ncbi.nlm.nih.gov/pubmed/25665728


A computational strategy for calibrating, validating and analyzing molecular dynamics (MD) simulations to predict dynamic nuclear polarization (DNP) coupling factors and relaxivities of proton spins is presented. Simulations of the polarizing agent TEMPOL in liquid acetone and DMSO are conducted at low (infinite dilution) and high (1 M) concentrations of the free radical. Because DNP coupling factors and relaxivities are sensitive to the time scales of the molecular motions, the MD simulations are calibrated to reproduce the bulk translational diffusion coefficients of the pure solvents. The simulations are then validated by comparing with experimental dielectric relaxation spectra, which report on the rotational dynamics of the molecular electric dipole moments. The analysis consists of calculating spectral density functions (SDFs) of the magnetic dipole-dipole interaction between the electron spin of TEMPOL and nuclear spins of the solvent protons. Here, MD simulations are used in combination with an analytically tractable model of molecular motion. While the former provide detailed information at relatively short spin-spin distances, the latter includes contributions at large separations, all the way to infinity. The relaxivities calculated from the SDFs of acetone and DMSO are in excellent agreement with experiments at 9.2 T. For DMSO we calculate a coupling factor in agreement with experiment while for acetone we predict a value that is larger by almost 50%, suggesting a possibility for experimental improvement.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization
From The DNP-NMR Blog: Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization Gajan, D., et al., Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization. Proc. Nat. Aca. Sci. USA, 2014. 111(41): p. 14693-14697. http://www.pnas.org/content/111/41/14693.abstract
nmrlearner News from NMR blogs 0 11-12-2014 03:02 PM
TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions
From The DNP-NMR Blog: TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions Gafurov, M., TEMPOL as a polarizing agent for dynamic nuclear polarization of aqueous solutions. Magn. Reson. Solids., 2013. 15: p. 13103. http://mrsej.ksu.ru/contents.html#13103
nmrlearner News from NMR blogs 0 05-03-2013 02:26 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids July 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 64</br> </br> Graphical abstract
nmrlearner Journal club 0 12-15-2012 09:51 AM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids July 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 64</br> </br> Graphical abstract
nmrlearner Journal club 0 12-01-2012 06:10 PM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> C. Griesinger, M. Bennati, H.M. Vieth, C. Luchinat, G. Parigi, P. Höfer, F. Engelke, S.J. Glaser, V. Denysenkov, T.F. Prisner</br> Graphical Abstract http://ars.sciencedirect.com/content/image/1-s2.0-S0079656511000689-fx1.jpg Graphical abstract Highlights
nmrlearner Journal club 0 03-09-2012 09:16 AM
Dynamic Nuclear Polarization at High Magnetic Fields in Liquids
Dynamic Nuclear Polarization at High Magnetic Fields in Liquids Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 4 November 2011</br> C.*Griesinger, M.*Bennati, H.M.*Vieth, C.*Luchinat, G.*Parigi, ...</br> Highlights ? High field Dynamic Nuclear Polarization spectrometers for liquid samples have been constructed, working at 7, 9.2 and 14 T, respectively. ? The field dependence of the Overhauser DNP efficiency has been measured experimentally for the first time up to a field of 9.2 T and compared with experimental results from...
nmrlearner Journal club 0 11-05-2011 09:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:39 AM.


Map