BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-09-2015, 05:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A method for dynamic nuclear polarization enhancement of membrane proteins

From The DNP-NMR Blog:

A method for dynamic nuclear polarization enhancement of membrane proteins



Smith, A.N., et al., A method for dynamic nuclear polarization enhancement of membrane proteins. Angew Chem Int Ed Engl, 2015. 54(5): p. 1542-6.


http://www.ncbi.nlm.nih.gov/pubmed/25504310


Dynamic nuclear polarization (DNP) magic-angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy has the potential to enhance NMR signals by orders of magnitude and to enable NMR characterization of proteins which are inherently dilute, such as membrane proteins. In this work spin-labeled lipid molecules (SL-lipids), when used as polarizing agents, lead to large and relatively homogeneous DNP enhancements throughout the lipid bilayer and to an embedded lung surfactant mimetic peptide, KL4 . Specifically, DNP MAS ssNMR experiments at 600 MHz/395 GHz on KL4 reconstituted in liposomes containing SL-lipids reveal DNP enhancement values over two times larger for KL4 compared to liposome suspensions containing the biradical TOTAPOL. These findings suggest an alternative sample preparation strategy for DNP MAS ssNMR studies of lipid membranes and integral membrane proteins.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic nuclear polarization enhancement of protons and vanadium-51 in the presence of pH-dependent vanadyl radicals
From The DNP-NMR Blog: Dynamic nuclear polarization enhancement of protons and vanadium-51 in the presence of pH-dependent vanadyl radicals Perez Linde, A.J., et al., Dynamic nuclear polarization enhancement of protons and vanadium-51 in the presence of pH-dependent vanadyl radicals. Magn Reson Chem, 2015. 53(2): p. 88-92. http://www.ncbi.nlm.nih.gov/pubmed/25228149
nmrlearner News from NMR blogs 0 02-27-2015 11:25 PM
[NMR paper] Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc. 2013 Apr 3;135(13):5105-10 Authors: Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S Abstract ...
nmrlearner Journal club 0 10-14-2014 09:48 PM
Direct Enhancement of Nuclear Singlet Order by Dynamic Nuclear Polarization
From The DNP-NMR Blog: Direct Enhancement of Nuclear Singlet Order by Dynamic Nuclear Polarization I don't think I posted this one already. Tayler, M.C.D., et al., Direct Enhancement of Nuclear Singlet Order by Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2012. 134(18): p. 7668-7671.
nmrlearner News from NMR blogs 0 02-27-2014 03:20 AM
Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems
From The DNP-NMR Blog: Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems Cheng, C.Y. and S. Han, Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems. Annu Rev Phys Chem, 2013. 64(1): p. 507-32. http://www.ncbi.nlm.nih.gov/pubmed/23331309
nmrlearner News from NMR blogs 0 07-08-2013 02:17 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
From the The DNP-NMR Blog: Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization Takahashi, H., et al., Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2013. http://dx.doi.org/10.1021/ja312501d Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate...
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: Sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles.
Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: Sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles. Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: Sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles. J Magn Reson. 2011 Jul 2; Authors: Tang W, Nevzorov AA Thermodynamic limit of magnetization corresponding to the intact proton bath usually cannot be transferred...
nmrlearner Journal club 0 07-26-2011 09:30 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:58 PM.


Map