BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-06-2018, 03:16 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Mechanism of spontaneous polarization transfer in high-field SABRE experiments

From The DNP-NMR Blog:

Mechanism of spontaneous polarization transfer in high-field SABRE experiments

Knecht, S., et al., Mechanism of spontaneous polarization transfer in high-field SABRE experiments. Journal of Magnetic Resonance, 2018. 287: p. 74-81.


https://doi.org/10.1016/j.jmr.2017.12.018


We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on “spontaneous” polarization transfer from parahydrogen (pH2, the H2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î1zÎ2z spin order of catalyst-bound H2; (ii) spin order conversion Î1zÎ2z->(Î1z+Î2z) due to cross-correlated relaxation, leading to net polarization of H2; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T0 mixing in the catalyst-bound form of H2, while cross-correlated relaxation originates from fluctuations of dipole–dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH2 and thermally polarized H2.


p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} span.s1 {font: 12.0px 'Lucida Grande'}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE
From The DNP-NMR Blog: Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Roy, S.S., et al., Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE. J. Magn. Reson., 2017. 285: p. 55-60. http://www.sciencedirect.com/science/article/pii/S1090780717302525
nmrlearner News from NMR blogs 0 02-05-2018 06:55 PM
High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes
From The DNP-NMR Blog: High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Hermkens, N.K.J., et al., High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes. J. Magn. Reson., 2017. 276: p. 122-127. https://doi.org/10.1016/j.jmr.2017.01.011
nmrlearner News from NMR blogs 0 05-24-2017 07:40 PM
Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE #DNPNMR
From The DNP-NMR Blog: Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE #DNPNMR Eshuis, N., et al., Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE. J Magn Reson, 2016. 265: p. 59-66. http://www.ncbi.nlm.nih.gov/pubmed/26859865
nmrlearner News from NMR blogs 0 06-22-2016 09:14 PM
Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study
From The DNP-NMR Blog: Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study Pravdivtsev, A.N., et al., Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study. J Magn Reson, 2015. 261: p. 73-82. http://www.ncbi.nlm.nih.gov/pubmed/26529205
nmrlearner News from NMR blogs 0 04-01-2016 09:27 PM
Coherent Polarization Transfer Effects Are Crucial for Interpreting Low-Field CIDNP Data
From The DNP-NMR Blog: Coherent Polarization Transfer Effects Are Crucial for Interpreting Low-Field CIDNP Data Panov, M., et al., Coherent Polarization Transfer Effects Are Crucial for Interpreting Low-Field CIDNP Data. Appl. Magn. Reson., 2014. 45(9): p. 893-900. http://dx.doi.org/10.1007/s00723-014-0568-9
nmrlearner News from NMR blogs 0 10-13-2014 04:08 PM
The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T)
From The DNP-NMR Blog: The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T) Barskiy, D.A., et al., The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T). J Am Chem Soc, 2014. 136(9): p. 3322-5. http://www.ncbi.nlm.nih.gov/pubmed/24528143
nmrlearner News from NMR blogs 0 05-19-2014 09:25 PM
The Feasibilityof Formation and Kinetics of NMR SignalAmplification by Reversible Exchange (SABRE) at High Magnetic Field(9.4 T)
The Feasibilityof Formation and Kinetics of NMR SignalAmplification by Reversible Exchange (SABRE) at High Magnetic Field(9.4 T) Danila A. Barskiy, Kirill V. Kovtunov, Igor V. Koptyug, Ping He, Kirsten A. Groome, Quinn A. Best, Fan Shi, Boyd M. Goodson, Roman V. Shchepin, Aaron M. Coffey, Kevin W. Waddell and Eduard Y. Chekmenev http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja501052p/aop/images/medium/ja-2014-01052p_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja501052p...
nmrlearner Journal club 0 02-25-2014 12:44 AM
Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems
From The DNP-NMR Blog: Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems Kaminker, I., et al., Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems. Phys Chem Chem Phys, 2009. 11(31): p. 6799-806. http://www.ncbi.nlm.nih.gov/pubmed/19639154
nmrlearner News from NMR blogs 0 09-23-2013 09:41 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:15 AM.


Map