BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-23-2018, 05:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Magnetic-Field-Dependent Lifetimes of Hyperpolarized 13C Spins at Cryogenic Temperature

From The DNP-NMR Blog:

Magnetic-Field-Dependent Lifetimes of Hyperpolarized 13C Spins at Cryogenic Temperature

Niedbalski, P., et al., Magnetic-Field-Dependent Lifetimes of Hyperpolarized 13C Spins at Cryogenic Temperature. The Journal of Physical Chemistry B, 2018. 122(6): p. 1898-1904.


https://doi.org/10.1021/acs.jpcb.8b00630


Using a home-built cryogen-free dynamic nuclear polarization (DNP) system with a variable magnetic field capability, 13C spin–lattice T1 relaxation times of hyperpolarized [1-13C] carboxylates (sodium acetate, glycine, sodium pyruvate, and pyruvic acid) doped with trityl OX063 free radical were systematically measured for the first time at different field strengths up to 9 T at T = 1.8 K. Our data reveal that the 13C T1 values of these frozen hyperpolarized 13C samples vary drastically with the applied magnetic field B according to an apparent empirical power-law dependence (13C T1 ? B?, 2.3 < ? < 3.1), with relaxation values ranging from a few hundred seconds at 1 T to over 200,000 s at fields close to 9 T. This low temperature relaxation behavior can be ascribed approximately to a model that accounts for the combined effect of 13C–1H intramolecular dipolar interaction and the relaxation contribution from the paramagnetic impurities present in the DNP sample. Since the lifetime or T1 storage of the hyperpolarized state is intimately linked to DNP efficiency, these 13C relaxation data at cryogenic temperature have important theoretical and experimental implications as the DNP of 13C-labeled biomolecules is pushed to higher magnetic fields.


p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} span.s1 {font: 12.0px 'Apple Symbols'}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study
From The DNP-NMR Blog: Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study Pravdivtsev, A.N., et al., Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study. J Magn Reson, 2015. 261: p. 73-82. http://www.ncbi.nlm.nih.gov/pubmed/26529205
nmrlearner News from NMR blogs 0 04-01-2016 09:27 PM
Room temperature hyperpolarization of nuclear spins in bulk
From The DNP-NMR Blog: Room temperature hyperpolarization of nuclear spins in bulk Tateishi, K., et al., Room temperature hyperpolarization of nuclear spins in bulk. Proc Natl Acad Sci U S A, 2014. 111(21): p. 7527-30. http://www.ncbi.nlm.nih.gov/pubmed/24821773
nmrlearner News from NMR blogs 0 08-19-2015 03:24 PM
Room temperature hyperpolarization of nuclear spins in bulk
From The DNP-NMR Blog: Room temperature hyperpolarization of nuclear spins in bulk Tateishi, K., et al., Room temperature hyperpolarization of nuclear spins in bulk. Proc. Nat. Aca. Sci. USA, 2014. 111(21): p. 7527-7530. http://www.pnas.org/content/111/21/7527.abstract Dynamic nuclear polarization (DNP), a means of transferring spin polarization from electrons to nuclei, can enhance the nuclear spin polarization (hence the NMR sensitivity) in bulk materials at most 660 times for 1H spins, using electron spins in thermal equilibrium as polarizing agents. By using electron spins...
nmrlearner News from NMR blogs 0 07-12-2014 04:28 AM
Hyperpolarized singlet lifetimes of pyruvate in human blood and in the mouse
From The DNP-NMR Blog: Hyperpolarized singlet lifetimes of pyruvate in human blood and in the mouse Marco-Rius, I., et al., Hyperpolarized singlet lifetimes of pyruvate in human blood and in the mouse. NMR Biomed, 2013. 26(12): p. 1696-704. http://www.ncbi.nlm.nih.gov/pubmed/23946252
nmrlearner News from NMR blogs 0 03-19-2014 10:43 PM
[Question from NMRWiki Q&A forum] Are there ways to explain magnetic-field dependent chemical shift?
Are there ways to explain magnetic-field dependent chemical shift? Hi everyone, I was wondering whether anyone could help me to explain why the chemical shifts in my proton and carbon NMR results do not exactly match with those reported in the literature?The solvent used in my experiment is exactly the same as the one used in the literature of reference (CD3OD), however the frequency applied in my experiment was 500MHz as opposed to 400MHz by the study i am comparing my results with. For example, in my proton NMR spectra, my results are usually 0.08 to 0.26 ppm higher than that in...
nmrlearner News from other NMR forums 0 08-05-2012 03:59 PM
Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR
Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR Abstract X-ray crystallography using synchrotron radiation and the technique of dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) require samples to be kept at temperatures below 100 K. Protein dynamics are poorly understood below the freezing point of water and down to liquid nitrogen temperatures. Therefore, we investigate the α-spectrin SH3 domain by magic angle spinning (MAS) solid state NMR (ssNMR) at various temperatures while cooling slowly. Cooling down...
nmrlearner Journal club 0 08-13-2011 02:47 AM
Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR.
Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR. 2011 Aug 9; Authors: Linden AH, Franks WT, Akbey U, Lange S, van Rossum BJ, Oschkinat H X-ray crystallography using synchrotron radiation and the technique of dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) require samples to be kept at temperatures below 100*K. Protein dynamics are poorly understood...
nmrlearner Journal club 0 08-10-2011 12:30 PM
[NMR paper] 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conf
1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. Eur J Biochem. 1993 Feb 1;211(3):555-62 Authors: Turner DL, Williams RJ The redox-state dependent changes in chemical shift, which have...
nmrlearner Journal club 0 08-21-2010 11:53 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:53 AM.


Map