BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR (http://www.bionmr.com/forum/news-nmr-blogs-47/impact-ho3-doping-13c-dynamic-nuclear-polarization-using-trityl-ox063-free-radical-dnpnmr-23936/)

nmrlearner 09-22-2016 10:41 PM

Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR
 
From The DNP-NMR Blog:

Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR


Kiswandhi, A., et al., Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical. Phys. Chem. Chem. Phys., 2016. 18(31): p. 21351-21359.


http://dx.doi.org/10.1039/C6CP03954E


We have investigated the effects of Ho-DOTA doping on the dynamic nuclear polarization (DNP) of [1-13C] sodium acetate using trityl OX063 free radical at 3.35 T and 1.2 K. Our results indicate that addition of 2 mM Ho-DOTA on 3 M [1-13C] sodium acetate sample in 1 : 1 v/v glycerol : water with 15 mM trityl OX063 improves the DNP-enhanced 13C solid-state nuclear polarization by a factor of around 2.7-fold. Similar to the Gd3+ doping effect on 13C DNP, the locations of the positive and negative 13C maximum polarization peaks in the 13C microwave DNP sweep are shifted towards each other with the addition of Ho-DOTA on the DNP sample. W-band electron spin resonance (ESR) studies have revealed that while the shape and linewidth of the trityl OX063 ESR spectrum was not affected by Ho3+-doping, the electron spin-lattice relaxation time T1 of trityl OX063 was prominently reduced at cryogenic temperatures. The reduction of trityl OX063 electron T1 by Ho-doping is linked to the 13C DNP improvement in light of the thermodynamic picture of DNP. Moreover, the presence of Ho-DOTA in the dissolution liquid at room temperature has negligible reduction effect on liquid-state 13C T1, in contrast to Gd3+-doping which drastically reduces the 13C T1. The results here suggest that Ho3+-doping is advantageous over Gd3+ in terms of preservation of hyperpolarized state-an important aspect to consider for in vitro and in vivo NMR or imaging (MRI) experiments where a considerable preparation time is needed to administer the hyperpolarized 13C liquid.


Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 12:42 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013