BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   News from NMR blogs (http://www.bionmr.com/forum/news-nmr-blogs-47/)
-   -   Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging (http://www.bionmr.com/forum/news-nmr-blogs-47/hyperpolarized-13c-dehydroascorbate-endogenous-redox-sensor-vivo-metabolic-imaging-21086/)

nmrlearner 07-23-2014 11:25 PM

Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging
 
From The DNP-NMR Blog:

Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging


Keshari, K.R., et al., Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc. Nat. Aca. Sci. USA, 2011. 108(46): p. 18606-18611.


http://www.pnas.org/content/108/46/18606.abstract


Reduction and oxidation (redox) chemistry is involved in both normal and abnormal cellular function, in processes as diverse as circadian rhythms and neurotransmission. Intracellular redox is maintained by coupled reactions involving NADPH, glutathione (GSH), and vitamin C, as well as their corresponding oxidized counterparts. In addition to functioning as enzyme cofactors, these reducing agents have a critical role in dealing with reactive oxygen species (ROS), the toxic products of oxidative metabolism seen as culprits in aging, neurodegenerative disease, and ischemia/ reperfusion injury. Despite this strong relationship between redox and human disease, methods to interrogate a redox pair in vivo are limited. Here we report the development of [1-13C] dehydroascorbate [DHA], the oxidized form of Vitamin C, as an endogenous redox sensor for in vivo imaging using hyperpolarized 13C spectroscopy. In murine models, hyperpolarized [1-13C] DHA was rapidly converted to [1-13C] vitamin C within the liver, kidneys, and brain, as well as within tumor in a transgenic prostate cancer mouse. This result is consistent with what has been previously described for the DHA/Vitamin C redox pair, and points to a role for hyperpolarized [1-13C] DHA in characterizing the concentrations of key intracellular reducing agents, including GSH. More broadly, these findings suggest a prognostic role for this new redox sensor in determining vulnerability of both normal and abnormal tissues to ROS.


Go to The DNP-NMR Blog for more info.


All times are GMT. The time now is 12:47 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013