BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-05-2018, 06:55 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE

From The DNP-NMR Blog:

Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Roy, S.S., et al., Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE. J. Magn. Reson., 2017. 285: p. 55-60.


http://www.sciencedirect.com/science...90780717302525


Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth’s magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ~3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} span.s1 {font: 12.0px 'Apple Symbols'}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy.
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy. Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy. Methods. 2018 Jan 13;: Authors: Gibbs EB, Kriwacki RW Abstract Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique for characterizing the structural and dynamic properties of intrinsically disordered proteins and protein regions (IDPs &...
nmrlearner Journal club 0 01-18-2018 12:41 PM
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy Publication date: Available online 16 January 2018 Source:Methods</br> Author(s): E.B. Gibbs, R.W. Kriwacki</br> Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique for characterizing the structural and dynamic properties of intrinsically disordered proteins and protein regions (IDPs & IDRs). However, the application of NMR to IDPs has been limited by poor chemical shift dispersion in two-dimensional (2D) 1H-15N...
nmrlearner Journal club 0 01-17-2018 07:00 PM
[NMR paper] Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. Related Articles Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. J Biomol NMR. 2017 Dec 11;: Authors: Takeuchi K, Arthanari H, Shimada I, Wagner G Abstract The authors regret a mistake appeared in the supplement of this paper.
nmrlearner Journal club 0 12-13-2017 06:15 PM
Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR
Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR Abstract The authors regret a mistake appeared in the supplement of this paper. Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 12-11-2017 12:45 PM
High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes
From The DNP-NMR Blog: High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Hermkens, N.K.J., et al., High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes. J. Magn. Reson., 2017. 276: p. 122-127. https://doi.org/10.1016/j.jmr.2017.01.011
nmrlearner News from NMR blogs 0 05-24-2017 07:40 PM
[NMR paper] Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. Related Articles Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. J Biomol NMR. 2015 Oct 23; Authors: Takeuchi K, Arthanari H, Shimada I, Wagner G Abstract Detection of (15)N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (?) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY...
nmrlearner Journal club 0 10-27-2015 12:33 PM
Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR
Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR Abstract Detection of 15N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15N nuclei (TROSY 15NH) yields high quality spectra in high field magnets (>600Â*MHz) by taking advantage of the slow 15N transverse relaxation and compensating for the inherently low...
nmrlearner Journal club 0 10-24-2015 05:49 AM
The Feasibilityof Formation and Kinetics of NMR SignalAmplification by Reversible Exchange (SABRE) at High Magnetic Field(9.4 T)
The Feasibilityof Formation and Kinetics of NMR SignalAmplification by Reversible Exchange (SABRE) at High Magnetic Field(9.4 T) Danila A. Barskiy, Kirill V. Kovtunov, Igor V. Koptyug, Ping He, Kirsten A. Groome, Quinn A. Best, Fan Shi, Boyd M. Goodson, Roman V. Shchepin, Aaron M. Coffey, Kevin W. Waddell and Eduard Y. Chekmenev http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja501052p/aop/images/medium/ja-2014-01052p_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja501052p...
nmrlearner Journal club 0 02-25-2014 12:44 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:50 PM.


Map