BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-07-2013, 10:42 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 21,495
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default High Frequency Dynamic Nuclear Polarization

From The DNP-NMR Blog:

High Frequency Dynamic Nuclear Polarization


Ni, Q.Z., et al., High Frequency Dynamic Nuclear Polarization. Acc Chem Res, 2013.


http://www.ncbi.nlm.nih.gov/pubmed/23597038


During the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-gamma nuclei such as the I = 1/2 species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, such as 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150-660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of approximately 4 at considerably lower paramagnet concentrations. Collectively, these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
From the The DNP-NMR Blog: High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture Michaelis, V.K., et al., High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture. J Am Chem Soc, 2013. http://www.ncbi.nlm.nih.gov/pubmed/23373472
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K January 2013 Publication year: 2013 Source:Journal of Magnetic Resonance, Volume 226</br> </br> We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25K and 9.4Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier , but also includes a corrugated waveguide for transmission of microwaves from...
nmrlearner Journal club 0 12-15-2012 09:51 AM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids July 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 64</br> </br> Graphical abstract
nmrlearner Journal club 0 12-15-2012 09:51 AM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K Available online 20 November 2012 Publication year: 2012 Source:Journal of Magnetic Resonance</br> </br> We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) , but also includes a...
nmrlearner Journal club 0 12-01-2012 06:10 PM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids July 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 64</br> </br> Graphical abstract
nmrlearner Journal club 0 12-01-2012 06:10 PM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K Publication year: 2012 Source:Journal of Magnetic Resonance</br> Kent R. Thurber, Alexey Potapov, Wai-Ming Yau, Robert Tycko</br> We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) ,...
nmrlearner Journal club 0 11-21-2012 04:33 AM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> C. Griesinger, M. Bennati, H.M. Vieth, C. Luchinat, G. Parigi, P. Höfer, F. Engelke, S.J. Glaser, V. Denysenkov, T.F. Prisner</br> Graphical Abstract http://ars.sciencedirect.com/content/image/1-s2.0-S0079656511000689-fx1.jpg Graphical abstract Highlights
nmrlearner Journal club 0 03-09-2012 09:16 AM
Dynamic Nuclear Polarization at High Magnetic Fields in Liquids
Dynamic Nuclear Polarization at High Magnetic Fields in Liquids Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 4 November 2011</br> C.*Griesinger, M.*Bennati, H.M.*Vieth, C.*Luchinat, G.*Parigi, ...</br> Highlights ? High field Dynamic Nuclear Polarization spectrometers for liquid samples have been constructed, working at 7, 9.2 and 14 T, respectively. ? The field dependence of the Overhauser DNP efficiency has been measured experimentally for the first time up to a field of 9.2 T and compared with experimental results from...
nmrlearner Journal club 0 11-05-2011 09:21 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:03 AM.


Map